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ABSTRACT

The phenomenal growth of the Internet and its entry into many aspects of daily

life has led to a great dependency on its services. Multimedia and content distribution

applications (e.g., video streaming, online gaming, VoIP) require Quality of Service

(QoS) guarantees in terms of bandwidth, delay, loss, and jitter to maintain a certain

level of performance. Moreover, E-commerce applications and retail websites are faced

with increasing demand for better throughput and response time performance. The most

practical way to realize such applications is through the use of overlay networks, which

are logical networks that implement service and resource management functionalities

at the application layer. Overlays offer better deployability, scalability, security, and

resiliency properties than network layer based implementation of services.

Network monitoring and routing are among the most important issues in the design

and operation of overlay networks. Accurate monitoring of QoS parameters is a challeng-

ing problem due to: (i) unbounded link stress in the underlying IP network, and (ii) the

conflict in measurements caused by spatial and temporal overlap among measurement

tasks. In this context, the focus of this dissertation is on the design and evaluation of

efficient QoS monitoring and fault location algorithms using overlay networks.

First, the issue of monitoring accuracy provided by multiple concurrent active mea-

surements is studied on a large-scale overlay test-bed (PlanetLab), the factors affecting

the accuracy are identified, and the measurement conflict problem is introduced. Then,

the problem of conducting conflict-free measurements is formulated as a scheduling prob-

lem of real-time tasks, its complexity is proven to be NP-hard, and efficient heuristic
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algorithms for the problem are proposed. Second, an algorithm for minimizing mon-

itoring overhead while controlling the IP link stress is proposed. Finally, the use of

overlay monitoring to locate IP links’ faults is investigated. Specifically, the problem

of designing an overlay network for verifying the location of IP links’ faults, under cost

and link stress constraints, is formulated as an integer generalized flow problem, and

its complexity is proven to be NP-hard. An optimal polynomial time algorithm for the

relaxed problem (relaxed link stress constraints) is proposed.

A combination of simulation and experimental studies using real-life measurement

tools and Internet topologies of major ISP networks is conducted to evaluate the pro-

posed algorithms. The studies show that the proposed algorithms significantly improve

the accuracy and link stress of overlay monitoring, while incurring low overheads. The

evaluation of fault location algorithms show that fast and highly accurate verification of

faults can be achieved using overlay monitoring. In conclusion, the holistic view taken

and the solutions developed for network monitoring provide a comprehensive framework

for the design, operation, and evolution of overlay networks.
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CHAPTER 1. INTRODUCTION

Recent years have seen a tremendous growth in the number and quality of Internet-

based multimedia applications (e.g., online gaming, video streaming, VoIP, etc.). In

addition, conventionally text-based Web pages are being replaced by multimedia-rich

content. Deploying and delivering such applications require Quality of Service (QoS)

support from the underlying network infrastructure. The typical QoS metrics are avail-

able bandwidth, latency, loss rate, and jitter. As long as the multimedia application

conforms to its QoS requirements, the network is supposed to provide for accepted re-

quests while maximizing the acceptance rate and revenue.

As new network applications and services emerge, new network functionalities are re-

quired and new operating challenges face the network infrastructure. The IP layer of the

TCP/IP network model has, for many years, successfully provided the necessary routing

service. However, adding new applications and services (e.g., multicast, monitoring) has

led to many security threats, deployment complexities and extra cost. In addition, new

functional requirements are emerging quickly (e.g., object lookup). Implementing such

requirements into routers, which are serving diverse network communities, requires high

management overhead, prone to errors, and not scalable. For example, IP multicast [1]

has been deployed on only a very small portion of the routers in the Internet [2].

An alternative solution to these challenges allows for the implementation of the

routing services, among other application-specific services (e.g., robust monitoring), at

the end nodes or the hosts rather than the routers. The end nodes along with the end-

to-end paths form an overlay network, which is a virtual abstraction of the underlying
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IP-level network implemented at the application level. Using such an overlay, complex

routing algorithm, security protocols, monitoring algorithms, and network applications

can be deployed with great versatility and ease, because we do not have to change the

underlying routers. Overlay nodes need to maintain up-to-date information regarding

the QoS metrics of overlay paths to the other overlay nodes, in order to forward packets

along the appropriate paths.

Now that the overlays have been established as a viable and feasible solution to

the aforementioned challenges facing today’s networks, the focus of the literature has

moved into two fronts. The first one is overlay design (i.e., choosing overlay nodes and

paths) to optimize the performance of the specific network application. Researchers have

advocated that using the underlying IP-level topological information will greatly enhance

the performance of overlays [20, 26, 27, 28, 35]. Thus, tools have been developed to infer

the underlying IP-level information and make it available to trusted applications that

require them [56]. Albeit, at the expense of the layered design principles. The second

research thrust deals with network monitoring. It has been quickly realized that new

applications can not completely rely on the paths chosen by IP-level routing [4] for two

main reasons. First, IP-level routing optimizes path selection for a system-wide criteria

(e.g., minimize maximum link utilization) and is often sub-optimal in terms of user

performance (e.g., policy routing, etc.) [29]. Second, it has relatively slow convergence

when faced with faults, congestion, and degraded performance. Also, sophisticated

monitoring tools and protocols can be readily deployed at the overlay level.

Overlay monitoring protocols have generally focused on exploiting the overlay and IP-

level topologies to achieve high monitoring accuracy at a low overhead [4, 5, 6, 10, 26, 35].

This is accomplished by considering all the overlay paths jointly rather than individually,

and exploiting the overlap at the IP and overlay levels. These protocols have abstracted

out the specific measurement tools used on each overlay path, and thus overlooked

the possible interference among measurements being run concurrently on overlapping
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paths. On the other hand, measurement tools deal with estimating the QoS properties

of individual paths, and hence do not address the benefits (i.e., lower overhead) and

problems (i.e., link stress) caused by conducting measurements on multiple overlapping

paths.

1.1 Thesis Statement

A comprehensive understanding of the overlay monitoring problem is provided in this

dissertation. Relevant elements that factor into the accuracy, overhead, and impact of

the monitoring infrastructure are identified. By integrating overlay monitoring protocols

and the information about measurement tools, the high accuracy of a single lone path

measurement and the scalability and efficiency of the monitoring protocols is achieved.

Also, by integrating IP-level topological information, the overlay link stress caused by the

monitoring packets is bound and controlled. In addition, overlay monitoring information

is used in network fault management. Specifically, IP links fault location.

1.2 Organization

The remainder of this dissertation is organized as follows.

• In chapter 2, the related work in the literature is reviewed. The chapter focuses on

overlay monitoring protocols, bandwidth estimation tools, and alarm correlation

and fault detection algorithms.

• In chapter 3, experiments are conducted to evaluate the extent of measurement

conflict and the factors affecting the accuracy of measurement. The measurement

conflict problem is formulated and its complexity is proven to be NP-hard. Polyno-

mial time scheduling heuristic algorithms are proposed to allow measurement tasks
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to run in a non-conflicting manner. In addition, simulation studies are conducted

to evaluate the performance of the proposed algorithms.

• In chapter 4, a scheme that controls the links stress caused by overlay monitor-

ing protocols is proposed. The goal is minimize the monitoring overhead, while

controlling the number of duplicate measurement packets that cross a certain link

(overlay or IP). Simulation studies are conducted to evaluate the performance of

the proposed scheme.

• In Chapter 5, the problem of link stress constrained fault location using overlay

measurements is formulated and its computational complexity is proven to be NP-

Hard. A relaxed problem is identified and a flow network solution is proposed.

Experimental studies on real-life Internet topologies are conducted to evaluate the

performance of the proposed solution.

• In chapter 6, the dissertation is concluded and interesting research directions are

identified.
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CHAPTER 2. BACKGROUND AND RELATED WORK

In this chapter, some background into the work related to our dissertation contribu-

tion is provided. In section 2.1, an introduction into overlay networks is given and the

scene is set for the overlay monitoring environment and the associated problems. Some

overlay networks applications are surveyed in section 2.2, as it is necessary to show the

importance of the monitoring problem, its performance and economical impacts, and its

pervasiveness into many aspects of the end-user’s applications. In section 2.3, some of

available bandwidth estimation tools and algorithms are discussed. These tools are used

at a network-wide level by the overlay monitoring protocols, which will be discussed in

section 2.4. Finally, some background into the fault management literature is given in

section 2.5.

2.1 What is an overlay network?

An overlay network is a virtual abstraction of the underlying IP-layer network, see

Fig 2.1. It can be represented as a graph Go = (Vo, Eo), where Vo is the set of all

overlay nodes, and Eo is the set of overlay edges between the overlay nodes that are

constructed using the specific overlay application. IP-level routers and other end-nodes

are abstracted away from the vertex set Vo, while IP links are left out of the set Eo. Such

an abstraction drastically simplifies the network graph, as well as the related network

algorithms, which is one of the attractive characteristics of overlay networks [3, 5, 26].
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Overlay Topology

I P- level Topology

Figure 2.1 An example overlay network and the underlying IP-level
topology.

Overlay networks have come to play an increasingly diverse role in today’s network

applications. Such applications include end-system multicast [5], peer-to-peer systems

[6, 10], routing for high reliability [4, 20], storage and lookup systems (e.g., Akamai [21]),

and security [24]. Monitoring overlays are also becoming more common, Internet service

providers (ISPs) are deploying monitoring tools at specific nodes in their networks, as

part of a Network Measurement Infrastructure (NMI) [25]. Overlays allow designer to

implement and deploy their algorithms, applications, and services with great flexibility

and versatility. However, maintaining the efficient and correct operation of these overlays

requires regular probing of overlay links to measure available bandwidth, delay, and loss

rate. Network monitoring is an important infrastructure service that helps in tracking

network performance, security, and fault management.

One of the paramount issues to the overlay application is the construction of the

overlay topology [3]. The topology consists of the set of the overlay nodes and the

collection of direct or indirect neighbors. The choice of the overlay network topology, or

the choice of neighbors at each node, has a significant impact on systems performance.

For example, suboptimal multicast trees may result in high link stress and high relative

delay penalty (RDP) [26], while a poor quality backup path will affect the fault tolerance

of that application. In order to construct an efficient overlay topology, applications need
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to carefully select paths between overlay node pairs. These paths need to be monitored

to keep an up-to-date view of their quality.

To put these problems in perspective, and to design systematic and practical so-

lutions, this dissertation envisage an overlay monitoring framework comprised of the

following elements, see Fig. 2.2:

• Monitoring requirements: The information flow starts by identifying the mon-

itoring requirements, these requirements are either specified by the user (i.e., net-

work administrator), or the application. Realizing these requirements can be ac-

complished either by network tomography algorithms, or directly through mea-

surement tools.

• Network tomography: The network tomography algorithms identify the most

suitable (e.g., result in least overhead) paths and trees that achieve the moni-

toring goals, and process the intermediate monitoring results into final results that

fulfill the user requirements. Traditionally, there has been a gap between choosing

the paths to be monitored on one hand, and how the measurements are actually

conducted on the other.

• Measurement tasks generation: Given a network topology, a monitoring algo-

rithm, and a set of measurement tools, we are supposed to be able to generate

measurement tasks based on this and possibly more information. Several issues

and research tasks can be thought of in this context; specifically, the choice of the

monitoring frequency of each task. Many factors affect this choice as given below.

– The measurement overhead. Typically it is desirable to limit the measurement

overhead to a certain amount. Also, how will this overhead be distributed

among tasks?
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– Assigning frequency to the tasks based on the stability of the path through

which this task will be run. Stable paths should be monitored less frequently.

– Inter-AS (Autonomous System) monitoring traffic is usually bounded by con-

tractual and managerial constraints (i.e., Service Level Agreements (SLA)).

– The schedulability of the task set. What if the task set is not schedulable?

How to modify the frequency, and for which tasks?

• Measurement Scheduling: The previous framework elements provide the input

to the practical solution that needs implementation. As we will see later on in this

dissertation, several problems arise in practice. Measurement scheduling presents

a time dimension solution to the measurement conflict problem that is caused by

overlap in the time and space dimensions (by space, we mean the network links).

• Spatial processing: In the case where time is not enough to solve the problems

caused by the overlap in time and/or space dimensions, we can process the set of

tasks so that they are schedulable or to produce low overhead, as we will see later

in chapter 3.

• Measurement tools: These tools of choice conduct the actual measurements.

However, they are not the subject of this dissertation. But, the nature of these

tools and how they interact with each other is important in a network, where

multiple tools are running on overlapping links and time periods.

• Distributed coordination: The monitoring framework will not be complete

without the inclusion of a distributed coordination and communication module.

The purpose of such module will be to communicate the monitoring requirements

to the appropriate nodes, gather, aggregate, and redistribute monitoring results,

in a scalable and timely fashion. Many algorithms have been proposed in the

literature [27, 28]. This subject is out of the scope of this dissertation.
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Figure 2.2 The various components of a monitoring framework.

• Monitoring results: The monitoring results may affect the monitoring require-

ments for subsequent monitoring cycles. For example, if the network conditions

fluctuate rapidly then we may wish to increase the monitoring frequency, or reduce

the frequency when the network is stable for long periods. More importantly, they

will drive the overlay routing decisions and the topology of the overlay network.

2.2 Overlay Network Applications

In this dissertation, overlay network applications refer to those network services that

run on top of an existing infrastructure and provide additional functionalities such as

end-node routing. Since we address overlay monitoring, which is vital to many types

of overlay applications, it is important to point out the variety of those applications

and how they make use of the monitoring information to optimize their performance

or even deliver an acceptable quality to the end user. Several categories of overlay

applications are discussed; including content distribution and dissemination networks,

and Peer-to-Peer system.
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Content Distribution

Depending on the content type being delivered, the overlay applications under this

category will require a varying set of QoS requirements. For example, a video confer-

encing application will require strict available bandwidth, latency, loss rate, and jitter

requirements. Deviation from these requirements will greatly affect the perceived qual-

ity at the end-user. Another major example is e-commerce. Studies have shown that

although the speed of Internet connections may be improving for an increasing number

of end-users, the amount of time that they are willing to wait on a retailer’s web page

to load is decreasing. It has been reported that the average retail web page response

time -for the shopper to abort- was 8 seconds about a decade ago, but now it is less

than 4 seconds [21]. Hence, network performance greatly affects costumer satisfaction

and revenues for the retailers using the content provider’s overlay network. Another im-

portant overlay application is the publish-subscribe system, which requires secure and

timely delivery.

Various enhancements, over the basic IP-level packet delivery, are possible only

through extensive monitoring. For example, to increase reliability, multiple duplicate

packets can be sent from one overlay node to the other along the source-destination path

with different duplication level (i.e., number of duplicate packets) between each pair of

overlay hops [21, 30]. In this case, monitoring will provide a map of available overlay

paths and their QoS parameters (e.g., reliability) to choose the duplication level and the

paths to send packets over. In another example, monitoring can help content providers

achieve load balancing and reduce congestion by monitoring the available bandwidth on

their overlay paths and direct traffic accordingly.

The overlay networks literature has witnessed the devolvement of a large number

of applications, protocols, and algorithms that require monitoring information as input

to optimize their performance. Example of these applications are: RON [4], Narada
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[5], NICE [11], HyperCast [12], Overcast [13], ScatterCast [14], OMNI [15], TAG [27],

Akamai [21], CoDeeN [63], BitTorrent [16], Globule [17], and Herald [18].

Peer-to-peer Systems

The traditional client-server communication model stores all the data on a centralized

server or a set of servers, and the clients request data from the server. Such a model

has been facing a lot of scalability problems, presents a single point of failure and a

network resource bottleneck close to the server, and has high management overhead [3].

To counter these problems, the peer-to-peer communication model has been proposed.

In this model, all the nodes are equivalent it functionality, with little or no centralized

control or management overhead [6]. Peer-to-peer systems has witnessed a tremendous

amount of research in object location and search, structuring, and distributed hashing

[7].

A peer-to-peer system distributes objects (e.g., music files) and their indices across

the network [6, 9, 10]. Multiple copies of the same object and its index may exist in

the network, thus, adding more fault tolerance and reliability. Each peer contributes its

resources (i.e., storage, computation, and bandwidth) and content to the whole system,

hence, increasing scalability.

The cost of distributing objects and their indices is that they will be harder to locate.

Peer nodes are expected to receive queries searching of a certain object or content, and

based on that object or a search phrase determine the location of this object or the next

peer to ask. Overlay networks can be used in solving this problem by providing complex

functionalities like Distributed Hash Tables (DHT) that allow requests to be routed and

redirected based on the object name, index, or content rather than the IP address where

the object resides.
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2.3 Estimating QoS properties of End-to-End Paths

As we have seen earlier, several QoS parameters are of interest to overlay applica-

tions (e.g., loss rate, bandwidth, etc). However, measuring or estimating these param-

eters turns out to be a challenging problem. Bandwidth estimation is one of the most

important parameters, as it is the most difficult to obtain and it is necessary for many

traffic engineering algorithms, overlay multicast, and many other network applications

[19]. Understanding how these tools work in principle is essential to appreciate their

interactions and effects on each other’s accuracy when run at overlapping times and

paths.

There are three categories of bandwidth measurement and estimation tools, as follows

[47]:

• Capacity: refers to the maximum possible bandwidth that a link can deliver.

• Available bandwidth: refers to the maximum unused bandwidth of a link or

path.

• Bulk Transfer Capacity: refers to the achievable throughput of a bulk-transfer

connection using UDP or TCP.

In this section, we will discuss the later two categories as they are the most important

for overlay applications.

2.3.1 Available Bandwidth Measurement

The available bandwidth of a link or path is the unused capacity of that link or

path at the time of measurement. Clearly, available bandwidth depends on the traffic

load at the time of measurement and thus it is a time varying metric. A number of

techniques exist in the literature for measuring the available bandwidth of the path

of interest [39, 40, 42, 43, 44, 59, 60, 61]. Some of these are [47]: Variable Packet
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size (VPS) probing and its tailgating variation, Packet Pair/Train Dispersion (PPTD)

probing, Self-Loading Periodic Streams (SLoPS), and Trains of Packet Pairs (TOPP).

The majority of the available bandwidth measurement tools inject packet pairs or trains

of packet pairs into the path of interest with predetermined gaps between each packet

pair. They differ in the size of each packet in the pair, the rate at which the pairs/trains

are sent, determining the time gap between the packet pair and how it is varied at the

sender, and the way they estimate the available bandwidth based on the changes in the

time gap separating the pair of packets at the receiver. We go into the details of one of

the most commonly used measurement methods; Packet Pair/Train Dispersion (PPTD)

[48].

In PPTD, the source sends multiple equally sized packet pairs into the path of inter-

est. Each pair consists of two packets sent back to back with pre-determined rate, which

determines the intra-pair time dispersion (i.e., the time difference between the last bit

of each packet). Figure 2.3 shows how the intra-pair spacing changes based on the link’s

capacity. If the probe packet is of size S bytes and initial inter-packet dispersion ∆iin ,

and the capacity of link i is Ci, then ∆iout , the dispersion of the packet pair at link i, is

given by:

∆iout = max(∆iin ,
S

Ci

) (2.1)

Assuming no cross traffic and an N-hop path, then the dispersion ∆R that the receiver

will measure is given by [47]:

∆R = max
i=0,...,N

(
S

Ci

) =
S

min
i=0,...,N

(Ci)
=

S

C
(2.2)

After receiving the jth train of packet pairs, the receiver will calculate the jth estimate

of the available bandwidth experienced over the entire path as, ej = S
∆Rj

, where ∆Rj
is

the mean of the intra-pair dispersion within the jth received train. A major problem

with this approach is that cross traffic can lead to an overestimation or underestimation
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Figure 2.3 The dispersion of a packet pair going through a small capacity
link.

of ∆Rj
depending on when the cross traffic packets are transmitted (i.e., before the first

packet or in-between the packet pair) [39, 47].

Statistical methods (e.g., linear regression) can be used to filter out the erroneous

estimates. However, it was shown that standard statistical methods do not always lead

to correct estimation [47, 48]. In addition, the estimation accuracy also decreases as the

number of congested links increases [39].

2.3.2 Bulk Transfer Capacity Measurement

The available bandwidth on a certain path does not necessarily mean that the end-

user using this path will experience such a throughput. Thus it is necessary to measure

the achievable throughput using the TCP/IP transport protocols (i.e., TCP or UDP).

Tools under this category can be classified into TCP simulation tools (e.g., cap [60])

and path flooding tools (e.g., TReno [45], Iperf [59], Netperf [46]). In cap [60], the

sender and the receiver exchange UDP data and acknowledgment packets that contain

the information required to emulate TCP behavior. Flooding techniques, on the other

hand, inject TCP/UDP packets into the network as fast as possible within a specific

time period [59]. The user of the tools is given the freedom in choosing the specific

transmission rates and the various TCP attributes (e.g., congestion window, and slow

start threshold). For example, Iperf [59] using TCP and default settings, will repeatedly
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inject sequences of 8 KB packets over a period of 10 seconds. Using UDP, the default

bandwidth to send at is 1 Mbit/sec. Iperf allows the user to change these and other

parameters (e.g., TCP window size, length of buffer to send or receive, and transmission

duration), to achieve better measurement accuracy.

The reported bulk transfer capacity highly depends on a number of factors including

the number of competing TCP flows, the transmission rate, the TCP parameters such

as buffer and window size, the delay bandwidth product, the longevity of the TCP flow,

the cross traffic, and many other factors [47].

The specific measurement tools are not the focus of this dissertation. The point

to be made here has to do with the intrusive nature of these tools and their sensitive

nature to the timing among successive probe packets. Some studies have developed

queuing models for a packet pair sample being affected by the cross-traffic at a certain

link [61]. Throughout this research the measurement tool is assumed to be a black box.

Its computation and communication requirements are the only required input, in order

to judge whether it affects and affected by other measurement tools.

2.4 Overlay Monitoring Protocols

Several studies in the literature have focused on deploying measurement tools on a

large scale overlay-wide level. Although these tools had high accuracy and low over-

head as their design objective, it has been quickly realized that more improvements are

possible by utilizing the overlay and the underlying IP-level topologies. The main idea

is to choose a small number of overlay links and paths as a probing set such that it is

possible to infer or estimate the quality of the other unprobed paths. For these protocols

to reduce the monitoring overhead, a significant number of overlay paths need to share

the same set of IP links [26].
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Monitoring Protocols

Some overlay applications (e.g., Chord [6] and Pastry [10]) introduced limited con-

nectivity between overlay nodes as a way of reducing overhead. Albeit, it is possible

that some good paths exist among overlay nodes, but they would be excluded from mon-

itoring and thus from usage. Tang and Mckinley [26] have introduced the compromise

between monitoring accuracy- as opposed to coverage- and overhead. Their rationale

is that some applications (e.g., routing) may require bounded rather than completely

accurate monitoring results. They achieve their goal by constructing an intermediate

topology between the overlay and the IP-level topologies that consists of path segments

(i.e., the longest subpath of an IP path that is not incident to any other IP or overlay

paths leading to another node). Heuristics of the minimum set cover problem are then

applied on the intermediate topology to find the minimum number of overlay links or

paths to be probed. The quality of the unprobed paths is inferred from the bounds

on the quality of their constituting segments. Additional unprobed overlay paths are

chosen to refine the estimation accuracy. Still, high link stress have been reported by the

authors. In another study [28], they formulated the problem of exchanging monitoring

results as a link stress bounded overlay spanning tree.

Other methods have been proposed to select the probing set. Ozmutlu et al. for-

mulated the constrained coverage problem to optimally select a subset of trace route

probes to monitor the network [49]. They proposed the constrained coverage heuristic

to predict the delay on the network paths as well as to identify anomalies. Chen et al.

use algebraic method to choose a small subset of paths to be monitored and infer the

loss rate and latency of the other paths [35]. They provided a method to update the

probing set in face of topology changes and overlay nodes joining and leaving. However,

their approach is not suitable for bandwidth measurements because it is a concave QoS

metric.
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To the best of our knowledge, no overlay monitoring protocol has tackled the interac-

tion among the measurement probes, although some have noticed the problem and tried

to reduce the overall overhead to solve the problem [49]. The same goes for the high

link stress of these protocols. The goal of this dissertation is to consider time domain

and space domain (i.e., topological) solutions to the measurement conflict and high link

stress problems.

Monitoring Overlays and PlanetLab

PlanetLab is a globally distributed research overlay spanning over 917 nodes at 474

sites [58]. It provides a planetary-scale deployment platform for overlay applications

and the supporting protocols and algorithms. One such overlay application is CoDeeN

[63], which is a content distribution network running on top of PlanetLab. PlanetSeer

[64], a monitoring overlay, has been developed to support CoDeeN functionalities. It

works by combining passive and active measurement techniques to provide network-wide

monitoring. More specifically, PlanetSeer uses passive monitoring of CoDeeN traffic to

detect potential faults and anomalies in the network, while active measurements are

used to verify whether the potential faults are real. PlanetSeer provides a relatively low

overhead monitoring system, as it only initiates intrusive measurements when faults are

detected from the large volume of the CoDeeN traffic.

2.5 Network Fault Management

Network fault management has gained an increasing momentum in the recent years

as the communication systems continue to evolve and become more complex. The type

of new network applications (e.g., video streaming) has imposed new requirements on

fault management. Network faults need to be detected, located, and recovered from as

fast as possible due to the severe financial ramifications of the loss of network services
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[21].

The process of fault management consists of three major aspects; fault detection,

fault recovery, and fault localization [81]. Fault detection is the process of obtaining

signs of the network service degradation. These are typically provided as alarms by

the malfunctioning devices, protocol error messages, or simple customer complaints.

Fault recovery aims at restoring the service or avoiding interruptions to the network

connectivity [50]. Fault localization is the process of inferring the exact source of the

fault from the set of observed alarms and symptoms. In this section, We will survey the

later two aspects as they have witnessed the most research in the past decade.

Fault Localization and Alarm Correlation

Graph-theoretic techniques are one of the most commonly used in the literature. In

these techniques, the system is modeled using a Fault Propagation Model (FPM) or a

dependency graph, which describes symptoms and how they generate faults and affect

each other. Observed symptoms are represented as FPM nodes. Two nodes share an

edge if the failure of one node will cause the failure of the other node with a certain

probability, see Fig 2.4. A deterministic model will have a probability of 1 on all edges.

The problem boils down into analyzing the FPM to deduce the best possible explanation

of the observed faults and symptoms [81]. It has been shown that this problem is NP-

hard in general [82].

Heuristic algorithms have been proposed to solve this problem [81]. One such al-

gorithm is based on the divide and conquer approach. The main idea is to cluster the

dependency graph based on the maximum mutual dependency index [83], meaning that

any intra-cluster edge label is larger than any inter-cluster label. The ultimate goal is to

group all faults that are most dependent on each other in one cluster that explains the

domain of observed alarms. This algorithm will always explain all the observed alarms,

but may fail to give their most likely explanation in some cases [83]. Reference [81]
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Figure 2.4 An example network and the corresponding dependency graph.
Each a → b edge in the dependency graph has a label of the
form prob(a fails | b fails).

discusses a number of fault localization methods.

Recently, Tang et al. [95] extended the dependency graph model to include a set

of actions that can be used to best verify the most likely hypothesis or hypotheses. In

another study [93], spatial correlation of the observed symptoms was used for detection

of network black holes or silent failures.

Fault Recovery

The other aspect of the fault management literature to be discussed is the protec-

tion against faults and restoration of service. In protection schemes, backup paths are

provisioned and discovered in advance. Upon detection of a failure, backup paths will

be activated to route around failures as fast as possible (i.e., order of milliseconds). On

the other hand, restoration schemes operate over a larger time scale and thus are more

flexible in deciding the appropriate actions [50].

Depending on the amount of reserved resources, path protection schemes can be

divided into the following categories [94].

• 1 + 1 Protection: Packets are transmitted along the primary and backup paths.
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The destination will choose the fastest transmission or the best signal.

• 1 : 1 Protection. Resources are reserved along the backup path, but used only if

the primary path fails.

• 1 : N Protection. A single backup path is used to protect N primary paths.

This scheme can not handle more than one path failure at a time.

• M : N Protection. M backup paths are provisioned to protect N primary paths,

where 1 ≤ M ≤ N .

Each of these schemes represents a compromise between the cost, resource utilization,

and the amount of protection needed.

A number of data plane recovery techniques have been proposed in the literature [50].

Mainly, 1+1 and M:N rings, disjoint paths, Protection Cycles, p-cycles, Redundant

Trees, and IP Fast Reroute. We will not go into the details of those schemes in this

dissertation as they are not essential for the dissertation contribution and are included

here for the sake of completeness.

In this dissertation, the focus is on identifying the location of faults to enable the

network administrator to bring those links or interfaces back online and operational.

On the other hand, the focus of recovery techniques is continuing the transmission of

packets in the face of failures (i.e., while they get fixed). In this sense, our goal and the

fault recovery and protection schemes are complementary.

2.6 Discussion

The combined consideration of the overlay monitoring protocols and the measure-

ment tools can significantly improve the monitoring accuracy. The reason is that the

interaction among measurement tools running on overlapping overlay and physical paths



www.manaraa.com

21

can lead to congestion delay, and possibly loss of measurement packets. Since the avail-

able bandwidth measurement tools are specifically sensitive to the timing between the

measurement packets, it is imperative to study such an interaction. The same intuition

applies to the other QoS metrics, which are affected by congestion and loss. Algorithms

that significantly improve the measurement accuracy by scheduling conflicting measure-

ment activities at non-overlapping time periods are proposed. Also, methods to reduce

the link stress on highly shared paths segments, by optimizing monitoring protocols to

avoid unnecessarily sending multiple measurement packets on the same set of links, are

introduced. The former contribution can be viewed as a time domain solution to the

conflict problem, while the later is a space domain (i.e., network topology) solution to

the high link stress problem, with the two being related in that measurement conflict is

caused by link stress, which in turn caused by overlapping measurement paths.

Finally, monitoring information available to the overlay are used to detect IP links

faults by utilizing the underlay topological information and the availability of the overlay

paths. Although obtaining the underling IP-level topological information incurs extra

overhead, it has been shown that this information is available and stable for a reasonable

amount of time [26]. Although, such a cross layer optimization methodology violates

the network layering principles, an increasing number of overlay systems are using this

information to improve performance [28].
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CHAPTER 3. THE MEASUREMENT CONFLICT

PROBLEM AND SOLUTION

In computer networks, the traditional measurement problem has typically focused on

ways to measure a given path (or link) QoS parameters (e.g., bandwidth, delay, and jit-

ter) to the best possible accuracy. Measurement methods are categorized as either active

or passive. Passive measurements are non-intrusive, but have their limitations [51]. On

the other hand, active measurements inject a non-negligible amount of probe traffic [43].

Such approaches have generally overlooked the limited capacities of the network links

and the complex connectivity overlaps among different paths [25, 65]. Hence, causing

concurrent measurements to compete for the network resources (e.g., computation and

communication resources), interfere with each other, and produce inaccurate results.

In addition, Service Level Agreements (SLAs) usually limit the amount of monitoring

traffic that can exist in the network at any point in time [25]. Thus, there is a need to

coordinate simultaneous conflicting measurement activities in a way that the accuracy

and timeliness properties are satisfied.

In this chapter, the measurement conflict problem is considered in the context of over-

lay networks. The proliferation of the Internet has led to many measurement-sensitive

network applications. Such applications include overlay routing (e.g., RON [4]), con-

tent distribution systems (e.g., Akamai [21]), end-system multicast (e.g., Narada [5]),

and security monitoring (e.g., denial of service attacks detection). In addition, Internet

Service Providers (ISPs) are deploying measurement overlays to monitor the health of
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their networks.

A key aspect of the measurement conflict problem is the overlap among measurement

paths. This overlap is an obvious observation at the IP-level of the network. However,

measurements and the applications they support are typically deployed using overlays

with specifically designed topologies on top of the IP-level network. The point to be

noted here is that two seemingly disjoint overlay paths may actually be joined at the

IP-level. This dependence may also change with time as the IP-level routing and the

mapping to the overlay paths change.

Consider the example in Fig. 3.1, two measurement tasks T1 and T2, are being

conducted concurrently. Task T1 is running from source overlay node A to destination

overlay node F, while task T2 is running from source overlay node B to destination overlay

node E. The overlay (or IP) routing has resulted in these two tasks sharing the overlay

(or IP) link C−D. Now, depending on the bandwidth and computational requirements

of each task and with sufficient synchronization, a conflict may occur wherein both tasks

will inaccurately measure the bandwidth, loss, or latency of their respective paths due to

their resource consumption at the shared link. Experiments conducted using PlanetLab

[58] with various measurement tools [59, 42] confirm that such conflict does happen with

a substantial effect on the measurement accuracy.

A globally distributed monitoring network have been constructed on top of Planet-

Lab. The network consisted of 25 nodes (15 in the USA, 5 in Europe, and 5 in Asia

and Australia). Each node is programmed to conduct measurements every one hour,

and later on, they are scheduled to conduct measurements in sufficiently non-overlapping

time periods. The reported results use Iperf as the measurement tools, which reports the

transfer throughput achievable using UDP or TCP. Experiments performed using other

tools such as Pathload (measures available bandwidth), and H.323 beacon (measures

support for Voice and Video over IP) results in drawing similar conclusions [25].

Fig. 3.2 shows the drastic effect that the conflict has on the accuracy of the measure-
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Figure 3.1 A measurement example, tasks T1 and T2 sharing overlay link
C −D, which could have also been an IP link.

ment, as seen by any individual node. With 10 conflicting measurements, the reported

throughput is only about 20 − 30% of the reported value without conflict. The experi-

ment had been repeated multiple interleaved times to ensure network dynamics are not

the reason for the degradation. In addition, we have noticed the high stability of the

PlanetLab paths, due probably to the Internet 2 connections.

The contributions of this chapter are as follows:

• The measurement conflict problem is formulated as a scheduling problem of pe-

riodic QoS real-time tasks, and the complexity of the problem is shown to be

NP-hard [65].

• Two conflict-aware heuristic scheduling algorithms for uniform and no-uniform

measurement tasks are proposed based on graph partitioning concepts [65].

• A topology-aware heuristic scheduling algorithm that increases the efficiency of

producing feasible measurement schedules is proposed.

• The overlap among overlay paths, using various real-life Internet topologies of the

two major service carriers in the U.S., is studied
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Figure 3.2 Degradation of measurement accuracy as the number of con-
flicting measurements is increased. We start with no conflicting
tasks, then 5 conflicting tasks, and finally 10 tasks.

• The existence and the effect of measurement conflict is evaluated by constructing

a globally distributed measurement overlay on top of PlanetLab and using various

measurement tools.

The remainder of this chapter proceeds as follows. Section 3.1 presents our net-

work monitoring model, its assumptions, and its computational complexity. Section

3.2 discusses the related work and motivation. Section 3.3 goes into the details of the

conflict-aware scheduling algorithms. Section 3.4 presents the topology-aware scheduling

approach and algorithm. We discuss some implementation issues in section 3.5. Section

3.6 presents our performance evaluation results. We conclude in section 3.7.

3.1 Network Monitoring Model

The network model is generalized to include overlay networks, as well as IP-level

networks. As it has been mentioned earlier, network monitoring is considered part

of a NMI (Network Measurements Infrastructure) employed by ISPs (Internet Service
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Providers) at the IP-level network. While the rise of overlay networks and their varying

application requires regular monitoring to achieve efficient and correct operation of these

overlays.

Given an overlay network undirected graph Go = (Vo, Eo), where Vo is the set of

overlay nodes and Eo is the set of overlay edges. The corresponding IP-level graph

GIP = (VIP , EIP ) is also available, where VIP is the set of physical nodes and EIP is the

set of physical edges. Note that Vo ⊆ VIP , but Eo * EIP in general. Several previous

studies have assumed and justified the knowledge of the underlying IP topology by the

overlay network administrator [26].

Let T = {T1, . . . , Tn} the set of tasks to be scheduled. Ti = (si, di, ci, pi, tooli), where

si is the source of the measurement task, di is destination of the same task, ci is the

running time of the task, pi is the period of task Ti, and tooli is the tool used by the

task. The deadline of the task is the same as its period. We also define matrix M to

be an n× n 0-1 matrix, representing the possible conflict between tasks if they are run

at the same time, where mij = 1 if task i conflicts with task j, and 0 otherwise. The

conflict matrix M captures the conflict among tasks based on the set of tasks and the

computational and communicational conflict factors.

3.1.1 Problem Definition

We start by defining three important terms related to this problem:

• Feasibility: A feasible schedule is a schedule in which all tasks meet their dead-

lines and no two tasks are scheduled in a conflicting manner.

• Optimality: A scheduling algorithm is said to be optimal if no other algorithm

can find a feasible schedule for a task set that this algorithm has failed to find a

feasible schedule for.
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• Schedulability: This defines the efficiency of the scheduling algorithm in terms

of the ability to find a feasible schedule.

The measurement conflict scheduling problem can be defined as follows:

Given the set of tasks T and the conflict matrix M , find a feasible schedule for the

task set.

We prove that this problem is NP-hard by reduction from Maximum Cardinality

Independent Set [62], as follows:

Instance: A Graph H = (W,F ), where W is the set of vertices and F is the set of

edges.

Question: Is there a subset W ′ ⊆ W such that, for all u, v ∈ W ′, (u, v) /∈ F and W ′

is of maximum cardinality? An independent set is said to be of maximum cardinality if

it contains the largest possible number of vertices without destroying the independence

property.

Theorem 1 The optimal scheduling of measurement tasks is NP-hard.

Proof: An instance of the problem is considered, where all the tasks have the same

period and the same execution time (i.e., a uniform task set). An optimal scheduling

policy will allow for the maximum concurrency of tasks, without violating the conflict

constraint. Construct a task conflict graph G = (V, E) as follows. Assign a node for

each task in the set of tasks T , thus |T | = |V |. An edge is added between nodes i, j ∈ V

if the corresponding entry in the conflict matrix M, mij = 1.

Notice that finding a maximum independent set in the conflict graph will correspond

to finding a maximum set of non-conflicting tasks that can execute at the same time.

Finding the rest of the schedule can be done by repeatedly deleting the nodes in the

previous maximum set and their incident edges, and finding the maximum independent

set on the new graph. Thus, the problem is NP-hard. Note that the same proof can be

obtained using the minimum graph coloring problem [62].
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Although this problem sounds similar to the well known problem of offline single

processor scheduling of real-time tasks, a major difference exists. The resource under

consideration is the network on which probe conflicts occur. If the network is treated

as a single processor system, then there is no parallelism in executing the tasks, this

will lead to no conflicts, but poor schedulability. The problem is also different from the

multiprocessor scheduling, because if the network is treated as a multiprocessor system,

then the problem become identifying the processors that are active (i.e., the tasks that

can execute concurrently) at any given time.

3.2 Related Work and Motivation

3.2.1 Related Work

Most of the research on network monitoring has focused on reducing the probing

overhead [6, 26, 35]. Nonetheless, this reduction is a function of the number of nodes in

the probing node set, with the best known algorithms having complexity of O(n log n).

However, the constant factor in this function is high and depends on the type of mea-

surement (e.g., bandwidth, loss, etc.) and other factors [85].

The measurement conflict problem was first introduced by Calyam et al. in [25].

They have observed such a problem while designing ActiveMon for the Third Frontier

Network (TFN) project. ActiveMon is an NMI software framework to collect and analyze

network-wide active measurements. In another study [55] they have developed a simple

scripting language interface to specify various measurement requirements used in gener-

ating measurement timetables. Our work is different from theirs in that we showed the

NP-hardness of the problem [65] and provided far superior alternative algorithms, while

highlighting the availability of a performance bound. Also, we conduct experimental

studies to show the existence and effect of the measurement conflict problem.

A token passing protocol has been used by related studies to minimize collisions
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between probes [54], this protocol is used to generate time series of measurement data,

which is then used in numerical forecasting models as part of a Network Weather Service.

However, their approach does not allow for concurrent execution of multiple measure-

ment tasks.

Periodic task scheduling is a well studied problem in the real-time scheduling lit-

erature. For example, EDF (Earliest Deadline First) scheduling is an optimal single

processor scheduling algorithm [66]. As the name suggests, EDF scheduling gives higher

priority to the task with the earliest deadline. In this study, we leverage some of the

concepts used in real-time scheduling, without affecting the novelty of our approach.

3.2.2 Motivation

In this section, some motivational examples are given, where the shortcomings of

existing solutions and the existence of a significant room for improvements, are shown.

The algorithms to be considered are:

• Unsynchronized scheduling (US): Tasks are run without regard to conflict.

This algorithm achieves maximum schedulability, but with a lot of conflicts.

• Non-preemptive EDF: This algorithm will schedule tasks based on deadline, with

higher priority given to earlier deadlines, with no regard to the benefits of concur-

rent execution. It permits no conflicts, but achieves worst schedulability.

• EDF-CE: EDF with Concurrent Execution, this is the algorithm proposed in [25].

Tasks are executed in EDF order, ready tasks are added randomly as long as they

do not conflict with the currently executing tasks.

Example 1. Consider the following seven identical tasks, Ti = (ci, pi) = (50, 100), i =

1, 2, . . . , 7, where ci is the execution time, and pi is the period of task Ti. The conflict

graph is shown in Fig. 3.3a. The schedule produced by the various algorithms is shown
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(b) The schedule produced by various algorithms.

Figure 3.3 Example 1. Using Unsynchronized Scheduling (US) will schedule
all the tasks, but EDF will schedule two tasks only, while 5 tasks
will miss their deadlines. Tasks 5 and 6 will miss their deadlines
under EDF-CE, while all tasks are scheduled with no conflict in
the optimal solution.

3.3b. US and EDF provide us with the two extremes of the scheduling solution, the first

achieves the least conflict, and the later achieves the best schedulability. EDF-CE on

the other hand, breaks the deadline tie between tasks randomly. Thus, it gives no guar-

antees on the amount of parallelism. The optimal solution will find the largest possible

set of non-conflicting tasks to be scheduled at any time. This feature is particularly

important with larger, more complicated conflict graphs.

In the previous example, the task set was uniform (i.e., tasks have the same period

and the same execution time). However, non-uniform task sets may need additional

attention.
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(b) The schedule produced by EDF-CE.

Figure 3.4 Example 2. Under EDF-CE, task 2 will miss its deadline due to
a scheduling anomaly, and the algorithm aborts.

Example 2. Consider the following set of three non-uniform tasks. T1 = (15, 50),

T2 = (35, 75), T3 = (50, 100). The conflict graph is given in Fig. 3.4a. This example

shows another interesting fact. When faced with a non-uniform task set, blindly try-

ing to increase task parallelism may lead to a scheduling anomaly, a situation in which

a higher priority task misses its deadline due to a lower priority task execution. The

schedules are shown in Fig. 3.4.

The previous examples have shown some of the shortcomings of the existing solutions.

US and EDF are useless for this problem due to large conflicts and poor schedulability

respectively. On the other hand, EDF-CE provides higher schedulability with fewer

conflicts, but it does not provide any guarantees on the amount of parallelism, misses

many chances for improvement, and may cause scheduling anomalies. The schedule
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produced by EDF-CE exhibits this problem, see Fig. 3.4b. Task T1 has the highest

priority (i.e., lowest deadline), to achieve maximum overlap, T3 was allowed to run

concurrently with T1, but since T3 has a longer execution time, it will continue running

past T1 causing T2 to miss its deadline.

3.3 The Scheduling Algorithms

Since the problem is NP-hard, we develop two heuristic algorithms based on graph

partitioning. The algorithms generally has the following three steps:

1. Construct the task conflict graph.

2. Partition the task conflict graph into a least number of partitions.

3. Schedule each partition concurrently as long as their is enough slots in the time

frame, where the time frame is the period of the uniform task set, or the least

common multiple (LCM) of the periods in a non-uniform task set. The number of

tasks scheduled to run concurrently in each time slot is equal to the cardinality of

the partition.

The high level flow chart for our scheduling algorithms is shown in Fig. 3.5.

Find the maximum 

set of tasks that can 

run concurrently  

Construct the Task 

Conflict Graph 

Remove scheduled 

tasks from the task 

conflict graph 

All tasks 

scheduled?

Yes

STOP

NO
Are all slots 

in the Time 

Frame 

scheduled?

Yes

START

NO

Figure 3.5 The Flow chart of the conflict-aware scheduling algorithms.
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3.3.1 Conflict-Aware Scheduling of Uniform Tasks

The conflict-aware scheduling algorithm for uniform tasks is shown in Algorithm 1.

The algorithm assumes that the task conflict graph had been constructed, and it is

provided as input. The central piece of this algorithm is the partitioning sub-routine.

We use a least conflict first partitioning algorithm [57]. The task with the least number

of conflicts is chosen first. Then, all of its neighboring (i.e., conflicting) tasks in the

graph are removed. We proceed until no more tasks can be added to the current set

(step 1.4). The tasks from the resulting partition are removed from the graph, along

with their incident edges (step 1.5). The process is repeated until all tasks are grouped.

Each group of tasks can be run concurrently. In case the number of time slots available

is not enough, the largest cardinality of task subsets can be run first to minimize the

number of dropped tasks.

Going back to example 1, we can easily verify that our conflict-aware algorithm for

uniform tasks will give the same solution as the optimal algorithm (for this example).

Fig. 3.6 shows the working of the algorithm, and the resulting schedule.

input : The Task Conflict Graph G = (V, E), where all tasks are uniform.
output: A schedule of tasks

S ← φ // A collection of subsets1.1

I ← φ // A subset of tasks1.2

while G 6= φ do1.3

I ← Partition(G) // Find the largest possible1.4

// non-conflicting subset of tasks
G ← G− I1.5

S ← S ∪ I1.6

end1.7

Since all tasks have the same deadline, tasks within a partition are executed in1.8

parallel, while different partitions are executed sequentially.

Algorithm 1: The conflict-aware scheduling algorithm for uniform tasks.
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(a) The working of algorithm 1.
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(b) The schedule produced by algorithm 1.

Figure 3.6 Under the conflict-aware algorithm for uniform tasks, all tasks
meet their deadlines.

Since the problem is reducible into a minimum graph coloring (or the maximum

independent set) problem [65], a wide variety of approximation algorithms can be used

to solve this scheduling problem while providing performance bounds.

The above conflict-aware algorithm assumes a uniform task set. This assumption

is not without merit. For example, RON uses pair wise measurements between the

members of the overlay, so a central operator may be issuing measurement requests at

regular intervals, while the execution time estimates is the worst case latency between

any pair of nodes in the overlay times some tool specific factor. Thus, the resulting task

set is uniform. The next section addresses the problem of non-uniform tasks.
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3.3.2 Conflict-Aware Scheduling for Non-uniform Tasks

For the general case of a non-uniform task set scheduling, we use period transfor-

mation, and execution time transformation [67]. Tasks within each partition are trans-

formed into a certain number of the same uniform task τ = (C, P ). This uniform task

can be the same across partitions or different. Transforming the tasks into a common

task ensures that all the tasks are aligned with each other. Thus, achieving higher

parallelism, while maintaining the original tasks’ properties of deadline and utilization.

Algorithm 2 shows the pseudo code for the slotted scheduling algorithm. The algorithm

proceeds in the following steps.

1. The current task set is grouped into a collection of non-uniform task partitions, as

in Algorithm 1 (steps 2.3-2.7).

2. Within each partition, tasks are divided into multiple uniform tasks τ = (C,P ),

where P is the common period and it is smaller than the period of any task in the

task set, C is the common execution time and it is smaller than the execution time

of any task in the task set, and the utilization C
P

is smaller than the utilization of

any other task. Subtasks from the same parent task will form a complete subgraph

in the task conflict graph (i.e., they pair-wise conflict), and each subtask will inherit

the conflicts of its parent task. The number of subtasks generated from a given

task is:

d ci/pi

C/P
e

There may be some performance loss due to the rounding up. However, achieving

higher parallelism and no scheduling anomalies overrides this slight loss of per-

formance. Note that τ can be the same across all partitions, or unique to each

partition.

Each subtask will inherit the deadline of its parent task. Hence, inherit the priority.
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3. Each partition is further divided into sub-partitions, using the least conflicts first

approximation algorithm (step 2.11).

4. The sub-partitions from all partitions are arranged in increasing order of the ear-

liest deadline of the parent task in the sub-partition. This is the schedule.

Going back to example 2, we can use τ = (5, 50) to normalize the tasks. Task T1

will be split into 3 sub-tasks, while task T3 will be split into 5 subtasks. This division

is useful for the purpose of finding maximum overlap, while preserving task priorities.

However, the tasks actual deadline is still the same. For example, in Fig. 3.7 at time

50, 3 sub-tasks of T3 will miss their deadline imposed by τ , but the actual deadline is

100. Task T2 was not split because it was in a different partition.

input : The Task Conflict Graph G = (V,E).
τ = (C,P )

output: A schedule of tasks

S ← φ2.1

I ← φ2.2

while G 6= φ do2.3

I ← Partition(G)2.4

G ← G− I2.5

S ← S ∪ I2.6

end2.7

foreach subset s ∈ S do2.8

Transform task subsets using τ2.9

Construct a subset conflict graph H, where subtasks from the same2.10

parent task share an edge
Construct sub-partitions from H2.11

end2.12

The earliest deadline of a parent task in a sub-partition is the deadline of2.13

that sub-partition.
Sort all the resulting sub-partitions in increasing of deadline. Output the2.14

schedule.
Algorithm 2: The conflict-aware scheduling algorithm for non-uniform
tasks.
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(b) The schedule produced by algorithm 2.

Figure 3.7 Algorithm 2 solution to example 2. Note that borders of consec-
utive slots assigned to the same parent task are merged together.
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3.4 Topology-Aware Scheduling

The scheduling of measurements can be thought of as a time dimension solution

for a space dimension problem, by space we mean the network path or link. However,

depending on the task set, the scheduling algorithm may not be able to solve the problem

within the given time constraints. In this case, we can combine space and time solutions

to modify the task set in such a way that it makes the new task set schedulable, albeit at

the expense of aggregation and coordination overhead. Consider the example in Fig. 3.1,

if it is not possible to schedule tasks T1 and T2 at non-overlapping times, we employ the

topology information to resolve the conflict among these tasks in the following manner:

task T1 is split into tasks T11 running from A to C, T12 running from C to D, and T13

running from D to F. Task T2 is split into tasks T21 running from B to C, and task T22

running from D to E, in addition to task T12. The topology-aware solution is shown in

Fig. 3.8.

Note that nodes C and D are overlay nodes. All of the new tasks can be run concur-

rently at the expense of incurring an overhead associated with aggregating the measure-

ment results. Thus, the spatial partitioning technique improves the schedulability while

incurring some additional overheads. In this example, we were able to split the tasks

because nodes C and D are overlay nodes. However, this could not have been possible

if these nodes were, for example, core routers.

Aggregation of Monitoring Results

Let Task Ti be split into tasks {Ti1, Ti2, . . . , Tim}, then the aggregation of monitoring

results can be easily performed, as follows:

1. Latency (L): L(Ti) =
m∑

j=1

L(Tij)

2. Loss rate (R): R(Ti) = 1−
m∏

j=1

[1−R(Tij)]



www.manaraa.com

39

A

B C D 

F

E

A

B C D 

F

E

Overlay Topology

I P- level Topology

T1 1

T2 1

T1 2 T1 3

T2 2

Figure 3.8 Splitting the measurement tasks in Fig. 3.1 into multiple non–
conflicting tasks that can run concurrently.

3. Bandwidth (BW): BW (Ti) = minm
j=1 BW (Tij)

As an example, consider task T2 in Fig. 3.8. The results of task T2 can be obtained

as follows:

1. L(T2) = L(T21) + L(T12) + L(T22)

2. R(T2) = 1− [1−R(T21)]× [1−R(T12)]× [1−R(T22)]

3. BW (T2) = min{BW (T21), BW (T12), BW (T22)}

Which Tasks to Split?

The overlay topology and the underlying IP-level topology will put some restrictions

on the pool of tasks that can be split. Out of these, there may be many heuristics for

choosing the tasks to be split that can achieve the desired schedulability. Such heuristics

include splitting the tasks with the most number of conflicts, and running the previously

mentioned scheduling algorithms on the new conflict graph. In this chapter, we adopt a

different approach, where the topology-aware splitting is done as a post processing step to

the previous algorithms. The intuition behind such approach stems from the observation
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Figure 3.9 The cumulative distribution function (CDF) of the partitions’
cardinality produced by the least conflicts first partitioning al-
gorithm for various conflict factors (0.1− 0.9).

in Fig. 3.9, which plots the cumulative distribution function (CDF) of the partitions’

cardinality produced by the least conflicts first algorithm (the exact setup is the same

as Fig. 3.12 in section 3.6.2). We have noticed that, for most conflict factors (i.e.,

probabilities), partitioning results in a significant number of small cardinality partitions

(i.e., 3 tasks or less). Such partitions serve as a perfect candidate for merger, as they can

save a predictable number of scheduling time slots. The conflict among tasks belonging to

different partitions is resolved by splitting conflicting tasks as mentioned in the example

in Fig. 3.8.

The Topology-Aware Scheduling Algorithm

The Algorithm listing is given in Algorithm 3. The algorithm embodies the previous

discussions. It starts by initializing the number of split tasks N to 0. This number
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should not exceed a given overhead threshold K, which we choose to specify as the max-

imum number of tasks that we are allowed to generate by splitting existing tasks. The

threshold K is related to, and depends on, the coordination and aggregation overhead

associated with the monitoring system. Next, the algorithm chooses the smallest two

partitions, resolves the conflict among their constituting tasks by performing topology-

aware splitting, and merges them together into a single partition. The process is repeated

until the overhead threshold is reached.

The solution for non-uniform tasks is a little bit tricky, as the produced schedule is

in terms of subtasks. In this case, we first use Algorithm 1 to produce an intermediate

schedule on which we apply Algorithm 3. The amount of saved time slots depends on

the longest task in each partition. Then, we apply Algorithm 2.

input : Set of Tasks: T
The Task Conflict Graph G = (V, E)
Overlay and IP-level topologies
Overhead Threshold K

output: A feasible schedule of tasks.

Run Alg. 1 on Task Set T3.1

Initialize Number of split tasks, N ← 03.2

while N ≤ K do3.3

use the network topologies to resolve conflict among tasks in the3.4

smallest two partitions in the schedule.
Update N3.5

if N > K then3.6

STOP and exit loop.3.7

end3.8

Merge the two partitions.3.9

end3.10

if Schedule is feasible then3.11

Output schedule3.12

end3.13

else3.14

Algorithm Fails.3.15

end3.16

Algorithm 3: The topology-aware scheduling algorithm.
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3.5 Implementation Issues

The scheduling algorithms are envisaged as a component of a monitoring infrastruc-

ture, which is part of a larger network management system, or a network application.

A node is selected as a controller, which is responsible for collecting and scheduling

measurement requests. To make the controller fault tolerant, well-known backup and

leader election strategies can be used. As for the performance bottleneck concern, we

argue that the communication and computation costs at the central node are small for

a reasonably sized monitoring task set.

Topology changes are another valid concern. However, several related studies [25,

26, 56] have assumed that the network topology is stable for a reasonable amount of

time that allow for at least one round of schedule execution. In addition, changes to the

topology do not necessarily mean changes to the tasks conflict graph, especially if the

conflict-causing overlap is at the overlay level.

Period and execution time transformation may lead to increased execution time of

the scheduling algorithm. Since the scheduling algorithm is either run offline or run only

when changes in the task set occur, this kind of increase is very moderate considering

the fact that the least conflict first partitioning algorithm runs in linear time [57], and

the processing capabilities of the centralized controller.

The design of the measurement tools should take into consideration the measurement

conflict problem, and the potential scheduling. Network measurement is a sophisticated

process that involves many design parameters that need to be considered in conjunction

with scheduling. Several measurement techniques exit, and some of them are more

suited than others for a scheduling environment. For example, to measure bandwidth,

some tools (e.g., Pathload [42], and PTR [44]) measure bandwidth over a short interval,

which is more convenient. However, other tools (e.g., pathChirp [41], Spruce [43]) use

a relatively longer measurement interval, with statistically constructed probing gaps.
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The tool designer needs to consider the effect of the possible disruption, caused by

scheduling, of the gaps between probe sequences. The measurement interval may also

affect the choice for C and P in τ .

Another implementation issue is that of the global synchronization of measurements

schedules starts and stops. Achieving a 100% synchronization of a distributed system’s

clocking is a difficult task. However, considering Fig. 3.10, we can see that complete

synchronization is not necessary, a useful property of this conflict problem is that mea-

surements accuracy gradually degrades with the amount of overlap. Thus, a certain

amount of synchronization imperfection can be tolerated.

3.6 Performance Evaluation

3.6.1 Experimental Evaluation

A globally distributed monitoring network is constructed on top of PlanetLab. The

network consisted of 25 nodes (15 in the USA, 5 in Europe, and 5 in Asia and Australia).

Each node is programmed to conduct measurements every one hour, and later on, they

are scheduled to conduct measurements in sufficiently non-overlapping time periods.

The reported results use Iperf as the measurement tools, which reports the transfer

throughput achievable using UDP or TCP. Performed experiments using other tools

such as Pathload (measures available bandwidth), and H.323 beacon (measures support

for Voice and Video over IP) results in drawing similar conclusions [25].

Fig. 3.2 shows the drastic effect that the conflict has on the accuracy of the measure-

ment, as seen by any individual node. With 10 conflicting measurements, the reported

throughput is only about 20 − 30% of the reported value without conflict. The experi-

ment had been repeated multiple interleaved times to ensure network dynamics are not

the reason for the degradation. In addition, we have noticed the high stability of the

PlanetLab paths, due probably to the Internet 2 connections.



www.manaraa.com

44

Measurement Accuracy vs. Schedulability

Fig. 3.10 highlights the opportunity for another area of research in this context.

Certain applications may require bounded rather than fully accurate measurements

[26]. Thus, we can change the task model into the well studied Imprecise Computa-

tion model [69]. The imprecise computation model logically divides the task into two

parts, mandatory and optional. The mandatory path should be executed completely,

while the optional part may be partially executed. The error in executing the task is the

amount of unfinished optional execution time. We can bring this model into the problem

by requiring a mandatory portion of a measurement task to be executed in exclusion

from other conflicting tasks, while its optional part may be scheduled in a conflicting

manner.
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Figure 3.10 Degradation of measurement accuracy as a function of the per-
centage of of the task’s execution time overlapping with other
conflicting measurement tasks.
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3.6.2 Simulation Results

3.6.2.1 Path Sharing

Another aspect of the problem to be studied is the amount of sharing among overlay

paths at the IP-level. This aspect is very important since it gives an incite into the

overlay path overlap necessary to cause conflict in measurements. We use real Internet

ISP topologies of two major U.S. carriers provided by RocketFuel [72]: AT&T (AS#

7018, 11800 nodes), and Sprint (AS# 1239, 10332 nodes).The mapping between an

overlay link and the underlying IP level path has been done using shortest path routing

on the IP network using hop count as the metric. The set of overlay nodes is uniformly

selected at random. The size of the overlay (i.e., number of nodes N) is set to 16, 32,

and 64. The overlay topology is varied in two ways: a complete graph (denoted as

complete), where each nodes maintains overlay links to every other node, and a random

graph (denoted as log) where each node maintains log2 N neighbors.

Fig. 3.11 shows the cumulative distribution function (CDF) of the number of links

shared by a given number of overlay paths, for various network sizes, overlay topologies,

and the two carriers mentioned above. It is clear from this figure that there is substantial

sharing among overlay paths. For example, for a complete overlay graph of 64 nodes

over the AT&T network, 65% of links have participated in about 25 paths or less, this

number drops to 5 paths or less for an overlay of size 16, which is a very small overlay

size. Note that the paths may or may not be the same. If we change the overlay topology

to a random graph (at the expense of the coverage and debugging capabilities), the same

numbers drop to 12 paths and 4 paths respectively. The Sprint network exhibits similar

properties.
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(a) AT&T, Complete, Network
size = 16
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(b) AT&T, Complete, Network
size = 32
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(c) AT&T, Complete, Network
size = 64
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(d) Sprint, Complete, Network
size = 16
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(e) Sprint, Complete, Network
size = 32
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(f) Sprint, Complete, Network
size = 64
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(g) AT&T, log, Network size = 16
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(h) AT&T, log, Network size =
32
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(i) AT&T, log, Network size = 64
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(j) Sprint, log, Network size = 16
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(k) Sprint, log, Network size = 32
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(l) Sprint, log, Network size = 64

Figure 3.11 The cumulative distribution function (CDF) of the number of
IP links being shared by a given number of overlay paths.
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3.6.2.2 Schedulability of uniform task sets

Scheduling uniform task sets depends solely on how good the partitioning algorithm

performs. To study this effect, we experiment with a task conflict graph consisting of 100

tasks, each pair of tasks share an edge based on a certain conflict probability. We vary

the conflict probability from 0.1 to 0.9, and we report the average number of partitions

generated over 20 runs. We find the optimal solution to the uniform scheduling problem

by solving successive Maximum Independent Set problems on the task conflict graph.

Given the task conflict graph G = (V,E), |V | = n, the Integer Linear Program (ILP)

formulation associates a binary variable xv to each node v ∈ V . The ILP is as follows:

Maximize
∑
v∈V

xv

Subject to

xu + xv ≤ 1, ∀{u, v} ∈ E

xv ∈ {0, 1} ∀v ∈ V

Fig. 3.12 shows that the proposed least conflicts first approach achieves about 10%

less number of partitions than EDF-CE. We solve the ILP for the optimal solution using

the CPLEX optimization tool [74]. Surprisingly, both solutions are close to the optimal.

This is due to the fact that we are finding successive independent sets not just one.

So the optimal solution may start by finding large independent sets, but as edges are

eliminated from the graph, all the algorithms will end up with a significant number of

pair-wise conflicting tasks, which they will handle similarly.

Fig. 3.13 compares the least conflicts first partitioning algorithm with the topology-

aware approach. As expected, the topology-aware approach reduces the number of

partitions by a decent number, and even surpasses the optimal solution numbers reported

in Fig. 3.12. However, it incurs higher coordination and aggregation overhead.
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Figure 3.12 The number of partitions produced by the EDF-CE algorithm,
and the least conflicts first partitioning algorithm.
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Figure 3.13 The number of partitions produced by the least conflicts first
algorithm and the topology-aware scheduling with resolved con-
flicts among a various number of tasks.
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3.6.2.3 Schedulability of non-uniform task sets

We now examine the schedulability of the conflict-aware algorithm for non-uniform

tasks. In particular, we study the success ratio of our approach in comparison to existing

solutions. The success ratio is defined as:

success ratio =
# of tasks successfully scheduled

Total number of tasks

We used a set of 20 tasks, and took the average of 10 runs. The period of each task is

selected uniformly at random from [100, 1000], we report the success rate as a function

of the conflict probability among tasks for task utilization values of 0.2, 0.4, 0.6. The

execution time of each task is the product of its period and the utilization value used in

the corresponding figure.

Fig. 3.14 shows that the conflict-aware scheduling algorithm tasks achieves up to

25% better success ratio. The main reasons for this improvement are the elimination

of scheduling anomalies, higher parallelism achieved by our algorithm, and a higher

density of tasks in each partition (i.e., a small number of partition have a large number

of tasks), which results in dropping low density partitions. In addition, it shows that

our conflict-aware approach and the EDF-CE algorithm follow the same trend as the

conflict probability increases. At low conflict probabilities (i.e, below 0.2), there is a

great deal of possible tasks concurrency, and both algorithms achieve high schedulability.

In the region between 0.2 and 0.8 conflict probabilities, the conflict-aware algorithm

achieves superior schedulability compared to EDF-CE. This superiority decreases with

increasing task utilization due to the smaller room for improvements. Both algorithm

converge again at high conflict probabilities (i.e., probabilities greater than 0.9), where

most of the tasks conflict with each other, and they must be executed sequentially to

avoid conflicts.
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(b) Task utilization = .4
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(c) Task utilization = .6

Figure 3.14 The success ratio as a function of the conflict probability.



www.manaraa.com

51

3.7 Conclusion

Network measurement is an important part of any network application or network

infrastructure. Traditionally, the focus has been on developing single-source single-

destination measurement tools that will most accurately estimate the properties of the

path of interest. Conduction network-wide measurements were then a matter of de-

ploying these tools on strategic nodes in the network. The collective effect that these

measurements have on each other has been largely ignored.

In this chapter, experimental studies that prove the existence and severity of the

measurement conflict problem were conducted. The problem of conducting conflict-free

measurements as a scheduling problem of real-time tasks was formulated and its com-

plexity was proven to be NP-hard. Polynomial time heuristic scheduling algorithms

were proposed based on a well-known Maximum Independent Set approximation algo-

rithm, which achieves 10% less number of partitions. Simulation studies have shown that

our algorithms improve schedulability by at least 25% compared to existing solutions.

In addition, studies of the conflict-causing topology overlap on real Internet AS-level

topologies was performed.

Future work includes evaluating the effect of measurement conflict on network appli-

cations, such as overlay multicast. For the scheduling part, concepts from the imprecise

scheduling literature, where tasks are allowed to partially overlap, can be formulated and

solved to increase the schedulability of measurement tasks. In addition, it is appealing

to apply and compare several graph coloring heuristics and approximation algorithms

to the measurement conflict problem. These algorithms can aid in obtaining bounds on

the schedulability of measurement tasks.
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CHAPTER 4. LINK STRESS CONTROL IN OVERLAY

NETWORKS MONITORING

Monitoring algorithms typically choose the set of paths to be probed, or they probe

all the overlay paths in the networks (i.e., pair-wise probing). As a consequence of the

overlay and physical topologies, we might get in a situation, where certain physical and

overlay links are shared among a large number of overlay paths. Once the set of paths

to be probed has been chosen, members of the overlay will send probes along these

paths regardless of the effort performed by other members. In other words, properties

of shared path segments are being measured indirectly multiple times.

The maximum number of measurements going through a certain link can vary be-

tween O(n) and O(n2), where n is the number of overlay nodes. Although the typical

number of overlay nodes is small (e.g., less than 250), the amount of injected traffic varies

depending on the measurement application. For example, consider two PlanetLab [58]

nodes; planetlab-3.ece.iastate.edu and planetlab1.ucsd.edu. Testing reachability with a

simple ping will inject a handful of packets at regular intervals. On the other hand,

measuring bandwidth or throughput, using a tool like Iperf [59], will repeatedly inject

sequences of 8 KB packets over a period of 10 seconds. Our experiments show that a

total of about 3.5 MB of packets were injected into the network for this measurement.

This high overhead is not peculiar to Iperf. Other measurement tools generate compara-

ble overhead [41]-[44]. It is of no surprise that this amount of overhead can cause delay,

congestion, and loss, which results in reporting incorrect measurements to the network
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administrator or the beneficiary application.

In this chapter, the goal is to reduce the link stress caused by monitoring algo-

rithms. To this end, the concept of Internal Probing, which uses readily available physi-

cal topology information to discover highly shared links and construct network probing

partitions, is introduced. Internal Probing tries to control the perimeter beyond which

certain probes (i.e., those probes crossing highly shared links) can not propagate. Sim-

ulation studies using GT-ITM [75] topology generator are presented. Results confirm

that Internal Probing significantly reduces average link stress by up to 30%.

The remainder of this chapter is organized as follows. We present a motivational

example in section 4.1. We discuss related work in section 4.2. We describe the Internal

Probing approach in detail in section 4.3. We present our simulation results in section

4.4. We conclude in section 4.5.

4.1 Motivation

Consider the example shown in Fig. 4.1. If we were to use pair-wise probing to

measure the bandwidth of all the overlay links, then physical links g and h would have

a link stress of 18T bytes, where T is a tool-specific value (e.g., 3.5 MB for Iperf in the

previous example). However, the link stress can be greatly reduced by making use of

the IP-level topology as follows: Let nodes A, B, and C probe node H, while nodes D,

E, and F probe node G, only T bytes will be needed to measure the bandwidth of link

HG as we will see in section 4.3. Thus, reducing the link stress on links g and h to T .

The probing results can be aggregated and disseminated by a designated node. The key

to the improvement achieved by Internal Probing is that we only need a small number

of packets to report the results obtained from injecting a high volume of monitoring

traffic (e.g., 18T= 18× 3.5 MB = 63MB). Assuming that each node generates a 10KB

performance report, which is fairly large [28], then the aggregation overhead is 90KB.
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Figure 4.1 An example overlay network and the underlying IP-level topol-
ogy. Overlay paths AD and CD overlap, while physical links h
and g are shared among many overlay paths.

4.2 Related Work

Recent work on network monitoring has focused on reducing the total number of

probes used (i.e., probing overhead), as exemplified by Chord [6] and Pastry [10], as well

as the approach described in [26]. In Chord and Pastry each node maintains connections

to O(log n) other nodes. Hence, the probing overhead is reduced to O(n log n), but each

node will have a partial view of the network. However, these methods still suffer from

high link stress [26]. The authors in [26] suggest that each node should have a full view

of the network at the expense of measurement accuracy. They show that an O(n log n)

probing overhead can achieve a 90% accuracy. Nevertheless, a high link stress had also

been reported. RON [4] and Narada [5] assume a small overlay network (i.e., less than 50

nodes) and use pair-wise probing, with a total overhead of O(n2). We have seen earlier

that the number of nodes is not the only factor affecting link stress and overhead, the

type of measurement needed (e.g., bandwidth or a simple reachability test) has a great

effect. Otherwise, the monitoring bandwidth requirements will be small if we would only

consider the number of nodes in typical overlay networks (e.g., less than 250).

Network tomography of network links from end-to-end path measurements typically

employs complex statistical methods (e.g., The expectation-maximization (EM) and the
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MVWA algorithms [32]). Our approach is similar to the network tomography schemes.

However, we aim at finding the path characteristics as opposed to link characteristics,

while reducing the link stress due to probing. In addition, we use simple algebraic

manipulations.

In another related study, Kwon and Fahmy [27] have proposed exploiting the underly-

ing network topology to construct overlay multicast networks that satisfy the application

requirements. They have assumed that the underlying routes are of high quality, which

requires constant monitoring of the overlay paths. Our approach is complementary in

nature to their approach, as the input to our approach is the output of theirs.

In chapter 3, the problem of measurement conflict, due to the communicational and

computational requirements of measurement tools and the network topology, was ad-

dressed. A scheduling algorithm that prevents conflicting measurements from executing

at the same time was proposed. However, the total number of monitoring packets cross-

ing each link is still the same. Depending on the number of measurement tasks, it may

not be possible to schedule all the tasks in a non-conflicting manner. The solution that

we proposed in [65] can be thought of as a time dimension solution. While the solution

proposed in this chapter is a space dimension solution. By space, we mean a network

link or path. Both solutions can be complementary, and an ongoing study is combining

the benefits of both approaches.

4.3 Methodology

In this section, a formal network model is given first, followed by the Internal Probing

approach.
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4.3.1 Network Model

Given an overlay network undirected graph Go = (Vo, Eo), where Vo is the set of

overlay nodes and Eo is the set of overlay edges. The corresponding IP (Internet Pro-

tocol) level graph G = (V, E) is also available, where V is the set of physical nodes and

E is the set of physical edges. Note that Vo ⊆ V , but Eo * E in general. Instead of

working directly on the physical graph G, we can construct a topology-aware overlay

network GT = (VT , ET ) [20, 68], where VT ⊆ V , and ET is the set of path segments. A

path segment is defined as the maximal sub-path such that no two path segments share

a physical edge, and every overlay path can be expressed in terms of elements in ET

[20, 68]. The graph GT is not necessary for the correctness of this approach, but merely

to work at a higher granularity than the physical network. For example, in Fig. 4.1,

physical links g and h will be treated as one segment.

We make the following assumptions that are commonly used in the literature:

1. There is a great deal of sharing between overlay paths. Recent studies have shown

that this assumption is reasonably true [26, 70].

2. Network level topology information is available. This assumption has been made

by several studies [20, 26, 71]. Also, tools that provide topology information have

been developed [56].

3. Overlay paths are stable for a reasonable amount of time (i.e., order of minutes) [4]

to allow for the aggregation of the probing results. This is true since path changes

are triggered by path quality changes discovered using probe packets, while the

opposite does not necessarily hold [26].

4. While overlay nodes are assumed to be able to inject and/or respond to probes,

non-overlay nodes only respond to probes. This assumption is especially valid be-

cause of the specific application we are considering, where ISPs have full control of
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the underlying IP network. Some researchers, with a similar deployment scenario,

have gone to the extreme by actually deploying measurement servers on top of

core routers [25]. Although ISPs may be able to optimize the overlay topology

to serve their purpose, IP-level routing determines the mapping of overlay paths

to the actual physical links. For example, link HG in Fig. 4.1 can be a BGP

route or a satellite link. In addition, other deployment scenarios (e.g., storage and

lookup systems) optimize the overlay topology to serve the specific application

requirements rather than the measurement requirements.

4.3.2 The Concept of Internal Probing

Internal Probing works by dissecting the current probing set (i.e., the set of paths

to be probed) to account for the sharing of path segments. Path segments exceeding a

given sharing threshold will induce partitions on their respective paths to create a new

probing set. We identify three kinds of probes needed for probing the new set, as shown

in Fig. 4.2:

1. End-to-End probes: These probes originate from an overlay node and get replied by

another overlay node at the other end of the overlay path. Unpartitioned overlay

paths will use these probes (e.g., in Fig. 4.2 path BC uses probe Prb3).

2. Internal-to-Internal probes: The end points of these probes are non-overlay nodes,

which is caused by partitioning (e.g., Prb2 in Fig. 4.2).

3. End-to-Internal probes: These probes originate from an overlay node, but get

replied by an intermediate node. They will be used once for each highly shared

path segment, and along with type 2 probes above, they are the key for achieving

lower link stress. There are two cases where this kind of probes can be employed:
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(a) Probing path segments with an overlay node at one end, while the other end

is an intermediate node (e.g., probe Prb1 in Fig. 4.2).

(b) If Internal-to-Internal probes can not be used (i.e., internal nodes unable to

inject probes), then these probes are used to measure the properties of the

inter-partitions segments.

Consider segment XY in Fig. 4.2. In order to measure its properties, node X (or

Y ) can send probe Prb2. Alternatively, node A can send a probe to node Y and a

sperate probe to node X (i.e., Prb1), then use the following equations to calculate the

the various QoS metrics:

1. Latency (L): L(XY ) = L(AY )− L(AX)

2. Loss rate (R): R(XY ) = 1− 1−R(AY )
1−R(AX)

3. Bandwidth (BW):

IF BW (AX) > BW (AY ) Then

BW (XY ) = BW (AY )

ELSE

BW (XY ) ≥ BW (AY )

Now, we can consider dissecting the probing set. Without Internal Probing, only

probes of type 1 will be used and the resulting link stress is excessive. Another approach

would probe each path segment separately using probes of type 3 and/or type 2, which

results in a lower number of probes crossing each link. However, a higher number of

nodes will participate in the measurement process, which increases the complexity and

signalling overhead to coordinate the process and aggregate the results.

We aim at finding a compromise between link stress reduction and coordination

complexity under the constraints imposed by the limited capabilities of the internal
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Figure 4.2 Highly shared path segment XY has induced a partition of the
overlay paths. Overlay paths AB, AC have been partitioned
into path segments AX, XY, Y B, and Y C.

(physical) nodes. To achieve this goal, we define a segment sharing threshold as the

number of overlay paths sharing this segment. Previous studies [5][26] have shown

that the average and worst case link sharing are generally considerably higher than

O(n). The optimal choice of a sharing threshold will depend on the number of overlay

nodes, the overlay topology, the underlying network topology, the type of measurement

being carried out, the maximum stress each segment is allowed to experience, and the

bandwidth of each segment.

Before presenting the pseudo code for Internal Probing, we define some of the asso-

ciated data structures and variables. Variable P is a collection of sets, where each set

represent an overlay path pi in terms of its constituent path segments. The notation |p|,
means the number of elements in set p. Variable W is a set of weights, where weight

wsi
is associated with path segment si and represents the number of paths sharing si.

Variable PS is the new probing set that achieves lower link stress. Variable K is the

sharing threshold. The value of K can be the same for all links, or specific for each

link. It is clear that the lower the value of K, the larger the number of segments being

probed explicitly, which may increase the overhead and may not be physically possible to

conduct the measurements due to accessibility limitations of the intermediate (physical)

nodes.
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input : The probing set P = {p1, p2, . . . , p|P |} where
pi = {s1, s2, . . . , s|pi|}
W = {w1, w2, . . . , wm}
The sharing threshold: K

output: The new Probing set PS

foreach p in P do4.1

S ← φ4.2

for i = 1 to |p| do4.3

S ← S ∪ si4.4

if wsi
≥ K then4.5

PS ← PS ∪ si4.6

PS← PS ∪ S4.7

S ← φ4.8

end4.9

end4.10

if S 6= φ then4.11

PS← PS ∪ S4.12

end4.13

end4.14

Algorithm 4: Internal Probing

The algorithm works by traversing each path in the probing set and if a segment

has a weight higher than the threshold K, then the corresponding path will be split.

At the end of the algorithm, the probing set would have been dissected into sub-paths.

No segment si in PS would be shared among more than K paths. It is clear that the

algorithm runs in order of the number of path segments in the probing set. Once the

partitioned probing set is available, the previously identified probe types can be readily

used to measure the properties of the paths and sub-paths in the new probing set. The

end points of the path or path segment will determine the type of probe to be used. The

Internal Probing algorithm is shown in algorithm 4.

To demonstrate the working of the algorithm, consider the simple network in Fig. 4.2.

Let us have a probing set that consists of the set of paths P = {AB,AC, AD,DB, DC, BC}.
The breakup of each path in terms of segments is as follows:

AB = {AX,XY, Y B}.
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AC = {AX, XY, Y C}.
AD = {AX,XD}.
DB = {DX,XY, Y B}.
DC = {DX,XY, Y C}.
BC = {BY, Y C}.
The weight of each path segment (i.e., the associated link stress in terms of the num-

ber of measurements using that segment) assuming symmetric links is W = {wAX =

3, wXY = 4, wXD = 3, wY B = 3, wY C = 3}. Note that because of symmetry, a segment

like XD will be regarded the same as DX. The extension to asymmetric segments is

straightforward. The last input parameter is the sharing threshold K. Setting the value

of K to 4 will result in dissecting or partitioning the probing set around segment XY .

Thus, the new probing set is: PS = {AX, XY,XD, Y B, Y C}. Segments AX, XD, Y B,

Y C are probed using type 3 probes. While segment XY is probed using either type 2

or type 3 probes. Aggregation is required to produce the measurements in terms of the

original probing set, as follows:

Let path p = {s1, s2, . . . , s|p|}, then:

Loss rate: R(p) ≤ 1−
∏
s∈p

(1−R(s))

Latency: L(p) ≤
∑
s∈p

L(s)

Bandwith: BW (p) ≥ min
s∈p

BW (s).

Implementation Issues

Throughout this chapter we have assumed the existence of the probing set. This

probing set is generated by the monitoring algorithm. The Internal Probing approach

is independent of the monitoring algorithm used. However, some of the monitoring

algorithms are centralized (e.g., [26, 71]), while others are distributed (e.g., [4, 6]).
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Internal Probing can be applied with centralized algorithms with no major modifications

to the coordination and aggregation infrastructure. In distributed algorithms there is

no coordination among nodes beyond the probing effort, so extra effort needs to be

performed to disseminate the probing results. Developing appropriate multi-cast trees

or distributed coordination systems will not be considered in this chapter. The authors

in [28] describe an algorithm for the construction of spanning trees for distributed overlay

path monitoring.

Using Internal Probing, a node is selected as a controller, which is responsible for

collecting measurement requests and should have the physical and overlay topologies

information available. The central node runs algorithm 4, and disseminates the infor-

mation needed for probing to all other nodes (i.e., who transmits what type of probes,

and what type of probes are available to nodes), and aggregates the results from the

various nodes. To make the controller fault tolerant, well-known backup and leader

election strategies can be used.

4.4 Performance Evaluation

In this section, we present our experimental setup and discuss the simulation results.

4.4.1 Simulation Metrics and Setup

We compare the proposed methodology augmented with a distributed monitoring

algorithm that uses pair-wise probing and an O(n log n) centralized probing algorithm

proposed in [26], against the bare versions of these two algorithms, in terms of the

following two metrics:

• Link stress. Defined as the number of duplicate probes crossing a path segment.

• Estimation accuracy. As we have discussed earlier in section 4.2, the algorithm

described in [26] sacrifices estimation accuracy for probing coverage. This estimation
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accuracy is peculiar to their algorithm, and it is different from the accuracy related to

the measurement conflict problem described in [25]. We consider pair-wise probing as

having a 100% accuracy, expressed in terms of the absolute relative error e , defined as:

e = |x−x̄|
x

, Where:

• x, is the value obtained using pair-wise probing.

• x̄, is the estimated value.

And the total estimation accuracy A is defined as:

A = 1−
∑
pi∈P

epi
.

We performed our simulation on a transit-stub topology of 1500 node using GT-

ITM topology generator [75]. The number of overlay nodes is varied between 4 and

256 nodes, selected uniformly at random in stub domains. We use Dijkstra’s shortest

path algorithm with latency as the links weight. The physical links latency values range

from 1 ms to 60 ms. We use the LM1 Gilbert model [73] for setting the loss rate of the

network layer links with the fraction of good links set at 90%. Available bandwidth is

randomly chosen between 100 MB and 500 MB for non-stub edges, and 500 KB to 1 MB

for stub edges [26]. We use two sharing threshold values, one for the non-stub edges and

the other for stub edges due to the big difference in their available bandwidth. Unless

otherwise stated, the sharing threshold for the high capacity non-stub edges is set to

250. Each simulation result is an average of 10 simulation runs, each of which with a

different random seed and a random network topology.

4.4.2 Results

Effect of node degree: Fig. 4.3 shows the effect of node degree, in the underlying

physical topology, on the average path segment stress for an overlay network of 64 nodes,

and a sharing threshold of 50 for stub edges. For example, with an average node degree

of 1.8, using pair-wise probing causes an average stress of 249, while the O(n log n)
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Figure 4.3 Effect of average node degree on link stress. The O(n log n)
algorithm with 90% accuracy.

algorithm with Internal Probing caused an average stress of 123. As the density of the

network increases, there will be more path diversity causing less sharing among overlay

paths, which translates into less stress. For example, at an average node degree of

3.8, using the O(n log n) algorithm without Internal Probing will result in an average

stress of 36, the same algorithm with Internal Probing will cause an average stress of

22. In general, Internal Probing produces 30% less link stress (using the same probing

algorithm).

Effect of the sharing threshold (K): Fig. 4.4 shows the effect of the stub edges

sharing threshold on the average link stress against the average physical node degree for

the two monitoring algorithms. As the value of K is increased less and less segments will

be partitioned, which leads to a lesser improvement. In Fig. 4.5 we set a global value of

the sharing factor for both stub and non-stub edges. Thus, capping the maximum (and

average) stress a link can experience (i.e., that of the sharing threshold value). This

scenario corresponds to the case, where there is a limit on the bandwidth allocated for

conducting measurements or any other similar constraints.
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Figure 4.4 Average link stress for various choices of the stub edges sharing
threshold K.
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Figure 4.5 Capping the average link stress by the choice of the sharing
threshold K (x axis in log scale). K here is the same for both
stub and non-stub edges. Average node degree is 2.

Effect of the number of overlay nodes: For Fig. 4.6 and Fig. 4.7, the stub edges

sharing threshold is set equal to the size of the overlay and 1.5 times that value for

non-stub edges, and the average node degree is set to 2. Fig. 4.6 examines the effect

that the number of overlay nodes has on the average path segment stress. Since the

members of the overlay network are uniformly distributed across the stub domains, the

larger the number of members the more overlay paths are there to step on each other.

Again, Internal Probing achieves better link stress.

Effect on the probing accuracy: While Internal Probing is helpful in improving link

stress, it can also achieve better accuracy for the centralized algorithm. As Fig. 4.7

shows, Internal Probing requires 5% less probes to achieve a 90% estimation accuracy

for latency and loss rate measurements. However, there is no much improvement to be

mentioned regarding bandwidth. This is related to the way path qualities are calculated

from the bounds on the qualities of their constituent path segments, see section 4.3.

So the fewer the number of segments, the better the accuracy for latency and loss rate

estimations, but that is not necessarily true for bandwidth, because it uses minimization.
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Figure 4.6 Effect of overlay network size on link stress (x axis in log scale).
The O(n log n) algorithm with 90% accuracy.

Monitoring results aggregation and distribution: It has been shown in a related study

[28] that the overhead and link stress associated with aggregating and disseminating

monitoring information is small compared to the overall monitoring overhead. Tang and

Mckinley [28] have formulated such a problem and proposed several heuristic solutions.

For example, their worst algorithm reported a worst case bandwidth consumption of

300KB, while their best algorithm achieved about 60KB worst case bandwidth consump-

tion. Such research problem is important, but it is not the subject of this dissertation.

4.5 Conclusion

In this chapter, the issue of reducing link stress in topology-aware overlay networks

was addressed. To achieve this objective, the Internal Probing scheme was proposed.

Our approach employed readily available physical (i.e., network-level) topology informa-

tion coupled with existing probing algorithms to provide intelligent probing that avoids

highly shared links. Simulation studies showed that the Internal Probing approach offer

significant benefits over the traditional topology-oblivious probing methods. However,
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such improvement needs to be balanced with the amount of overhead introduced in

communicating and aggregating probing results from various partitions in the overlay

network, and the probing capabilities of the intermediate (physical) nodes.

While our results showed that this approach already yields significant improvements,

there are several directions that are possible in order to advance this work. One such

direction is to study the effect of reduced buffering overhead caused by Internal Probing,

and how it will affect the reported measurement results.
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Figure 4.7 Minimum number of probes required to achieve a 90% estimation
accuracy (x axis in log scale). Also shown, the number of probes
used by pair-wise probing with and without Internal Probing to
achieve 100% accuracy.
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CHAPTER 5. Network Fault Location

Accurate fault detection and location affects the performance of Internet applications

(e.g., VoIP, video streaming, and online gaming), and ISP networks as a whole [77][78].

There is an ever increasing need to reduce rerouting and maintenance times. In order

to achieve stable operating environments for ISP networks and the kind of emerging

applications they support, we need to accurately locate IP links faults.

IP links faults can be caused by many factors, such as fiber cuts, router crashing or

misconfiguration, very heavy congestion, or maintenance activities causing unintentional

effects. These kinds of failures occur on a daily basis [79], and they may affect packet

forwarding even with the existence of backup paths due to the overlap among network

paths [80].

The process of fault monitoring goes through three steps. The first step is fault

detection, which is done through IP-level management agents via management protocol

messages (e.g., SNMP trap and CMIP EVENT-REPORT), or application-level overlay

monitoring [81]. These agents generate a set of alarms. After that, fault identification

through alarm correlation is performed. The output of the second step is a set of possible

fault scenarios. The majority of fault identification algorithms and systems [81, 84] rely

on spatial correlation of observed symptoms and possible fault scenarios. These systems

typically generate a set of equally plausible fault locations. This set of possible faults

is non trivial due to lost and spurious symptoms, the overlap among network paths,

and the network heterogeneity. The final step, which traditionally has been done by

the network operators or administrators, is fault verification through debugging. Fault
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verification locates the exact faulty link(s). The focus of this research is fault verification

using overlay networks to achieve accurate and fast IP links fault location.

The proliferation of infrastructure overlay networks allows the network administrator

to deploy short-term and long term network solutions with great versatility and flexi-

bility. Such overlays present a tremendous opportunity for the verification of suspected

faulty IP links. However, several issues arise in the design of such overlays due to the

IP and overlay link sharing among overlay paths. One of the major concerns is the IP

link stress (i.e., number of packets crossing the same link). Such stress can cause mea-

surement conflict [65], which in turn leads to congestion and packet loss. Thus, adding

further confusion rather than verifying the faulty IP links. In addition, overlay paths

may have varying properties such as the underling IP hop count or bandwidth capacity.

The contributions of this chapter are as follows:

• The problem of overlay design for IP links fault verification is formulated as a min-

imum cost link stress constrained path selection problem, and the corresponding

flow network is constructed.

• The complexity of the problem is proven to be NP-hard.

• The IP links coverage of various overlay sizes and topologies is studied using real-

life Internet topologies.

• Several interesting research problems are identified in this context.

The remainder of this chapter proceeds as follows. Section 5.1 gives a motivational

example and explores the problem space. Section 5.2 discusses the related work. Section

5.3 presents our network model and its assumptions. The overlay design problem flow

network formulation along with its complexity is presented in section 5.4. Section 5.5

presents the performance evaluation results. We conclude in section 5.6.
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5.1 Motivation

In this section, some of the issue involved in the design of overlay networks for IP

links fault verification are exposed, the problem space is explored. There are two aspects

of the problem: how do we obtain IP links fault information? And how do we verify

such information and what are the various performance issues that should be considered

in this context?

Fig. 5.1 shows an example overlay network and the underlying IP network [86]. Let

us assume that the overlay monitoring algorithm has chosen overlay paths E-C-A and

B-A as a subset of paths that will cover most of the underlying IP links, or for any other

consideration. The properties of the remaining overlay links can be calculated (e.g., link

AC), estimated [32], or probed explicitly (e.g., link DC).

Let us go through a scenario wherein a fault has occurred in an IP link, which caused

path E − C − A to go down, then consider the following:

• Performing spatial correlation [84] using overlay paths E − C − A and B − A,

and the underlying IP links, will generate a set of equally ”good” suspected list of

faulty IP links. This set includes links E − N2, N2 − C, and C − N1. Note that

this set could also have been generated by a management system at the IP layer.

• A network administrator will need to debug these suspected faulty IP links. Either

by checking each link physically one by one (i.e., white box testing), or through

end-to-end measurements (i.e., black box testing).

• Probing overlay paths D − C and C − A would be sufficient. If path D − C is

faulty then so is link N2−C, and if path C−A is faulty then link C−N1 is faulty.

If both paths are working then the assumption is that link E −N2 is faulty.

From this simple example, we can identify several issues involving this problem:
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Figure 5.1 A motivational example.

1. An awful choice would have been for node B to probe nodes C and D. Since there

is no overlay link between nodes B and C, and between nodes B and D. The paths

will have to go through node A first (because of overlay routing), which will result

in a higher link stress. For example, link A−N1 would have a stress of 4 probes,

and link N1−C would have a stress of 2 probes. Such stress can cause measurement

conflict [65], which in turn leads congestion and packet loss. Thus, adding further

confusion rather than verifying the faulty IP links.

2. The overlay needs to cover the underlying IP network or the portion containing the

suspected list of IP links. This coverage need to be sufficient for fault debugging

(i.e., sufficient number of good paths).

3. Different overlay paths may have varying costs (e.g., hop count) and/or bandwidth

capabilities. Such costs need to be minimized and/or the bandwidth constraints

respected.

4. The number of overlay nodes involved in the measurement needs to be minimized.

This has an effect on the management overhead.
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In this chapter, the problem of choosing the overlay paths with minimum cost subject

to IP links stress constraints is addressed assuming that we have a set of overlay nodes

to choose from. The link stress constraint will capture the measurement conflict, path

disjointedness, and bandwidth capacities of the underlying IP links. For example, a

stress bound of 1 on each IP link means that all the overlay paths need to be completely

disjoint.

5.2 Related Work

There have been many attempts to study the occurrence of failures in backbone

networks. In [77] the authors study the impact of failures in Sprint’s IP backbone

on VoIP services. They observed that failures occur on a daily basis and they have

a tangible impact on the operation of backbone networks. In another study [79], the

authors classified probable cause of such failures. They had found that 49% of all failures

affect a single link at a time, 21% of failures are caused by router-related problems or

optical equipments, and 20% is due to planned maintenance activities.

The area of fault detection and localization has been very active in the past decade

or so. An excellent survey of such algorithms has been presented by Steinder and Sethi

in [81]. SCORE [84, 93] is one of the most recent related studies. In SCORE, spatial

correlation on a bipartite fault graph is used to identify fault hypotheses that best explain

the failure signature with the least number of candidate faults. Such systems where used

to detect black holes in MPLS networks [93], or link fault detection in ATM networks.

In another paper, wang and Al-Shaer [95], extend the bipartite fault propagation graph

to a probabilistic model that can be used to handle lost and spurious symptoms. We

use such spatial correlation engines as an input to our problem.

In the design of monitoring overlays literature, Cantieni et al. [90] revisit the problem

of monitor placement, they propose an optimal algorithm to choose which monitors to
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activate and at what sampling rate in order to achieve a given measurement accuracy,

as opposed to maximizing the fraction of IP flows being monitored proposed by Suh et

al. [87]. In our study, we use similar assumptions regarding the available IP network

information. In another steady, Bejerano and Rastogi [88] propose a two phase approach

to minimize the monitoring infrastructure cost and the probing overhead of link delays

measurements even in the presence of link faults. Our contribution is different in that

we aim at pinpointing the faulty link(s) out of the suspected faulty ones, while theirs

is to ensure delay measurements are possible even in the presence of failures through

bypassing suspected faulty links irrespective of their accurate location.

Traditionally, the problem of fault verification or debugging has been conducted by

the network administrator. Approaches such as using the traceroute tool to locate the

faulty links by traversing the faulty paths cause a large amount of stress, especially

close to the source of these traceroute packets, due to the way traceroute works. Also,

they will take longer time to conduct in comparison to our proposed approach. In our

approach, we aim at using existing overlay measurement paths to locate these faulty

links. Thus, achieve fast location, while respecting the cost and stress constraints of the

underlying IP network.

5.3 Network Model and Assumptions

Throughout this chapter, the following model is used and assumptions that are com-

monly used in the literature are made:

1. We represent the network as an undirected graph G = (V,E), where V is the set

of physical nodes and E is the set of physical edges. From this graph a set of

network nodes Vo ⊆ V are available to be used in network debugging.

2. The routing paths from each node in Vo to every other node in Vo are known. This

routing information is represented as a matrix R = [rij], where rij is defined by:
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rij =





1 if path i traverses edge j

0 otherwise

Several related studies make this assumption [65, 87, 88].

3. We are given the set of suspected faulty IP links F = {f1, f2, . . . , f|F |}, where F ⊂
E. This set is generated by a fault detection and alarm correlation system. These

alarms are produced by management agents via management protocol messages

(e.g., SNMP trap and CMIP EVENT-REPORT) operating at the IP level, or using

overlay monitoring as in Fig. 5.1. This suspected list will need to be debugged

and verified operational.

4. The vector D = [di] specifies the bound on the link stress experienced by each link

i ∈ E. The bound is in terms of the number of paths using this link, but can also

be in terms of the number of probes or the bandwidth allocated for conducting

measurements on each link. By definition, the stress on faulty links should be 1

for the debugging to be correct (i.e., the debugging path should pass through only

one suspected faulty link at a time).

5. The set of non-faulty IP links is L = {l | l ∈ E \ F}.

6. The set of debugging paths is P = {p1, p2, . . . , p|P |}, contains those overlay paths

in |Vo × Vo| that pass through the set of faulty links. No path in P traverses two

faulty links at the same time, as it will violate the stress constraint.

7. Each source-destination path i ∈ |V | × |V | is associated with a non-negative cost.

This cost could represent the number of hops in each path, the bandwidth cost,

or the operational cost of that path depending on its geographical location or

accessibility [87]. For the sake of formulation simplicity, the path costs will be

expressed in terms of link costs κi, ∀li ∈ L
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5.4 Problem Formulation

Given the network graph G, the set of suspected faulty links F , the sets Vo and L,

and links costs. The goal is to find the set paths that can debug the suspected faulty

links at a minimum cost while respecting the link stress constraints for each link incident

to the debugging paths.

This problem is formulated as a integer generalized flow problem [89] by constructing

a flow network Gf = (Vf , Ef ), as follows:

1. Add a node for each suspected faulty link in F , a node for each debugging path

in P , and a node for each IP link that we are interested in bounding its stress. In

addition, add a dummy source s and a dummy terminal t.

2. Add an edge with (cost, upper bound, multiplier) label of (0, 1, 1) between the

source s and every other faulty link node fi ∈ F .

3. Add an edge with (0, 1, |pj|) label between each faulty link node fi ∈ F and the

nodes pj ∈ P representing its debugging paths. |pj| is the number of links in path

pj.

4. Add an edge with (0, 1, 1) label between each debugging path node and the non-

faulty links’ nodes li ∈ L that are incident to the corresponding path.

5. Add an edge with (κi, di, 1) label between each node representing links in L and

the terminal node t. di represent the bound on the stress experienced by link i in

terms of the number of paths sharing that link, and κi is the cost of link li.

The flow network Gf = (Vf , Ef ) corresponding to the minimum cost link stress

constrained overlay design for fault verification problem is shown in Fig. 5.2. It is

clear that finding the minimum cost maximum flow in this network will correspond to

finding the least cost maximum number of debugging paths (i.e., one for each suspected
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Figure 5.2 The flow network corresponding to the fault debugging problem.
Not all edges are labeled to keep the figure clear.

faulty link), while respecting the link stress constraints. Note that the bound on the

flow leaving the l nodes will limit the number of departing flow units. Hence, by flow

conservation, the number of incoming flow units (i.e., paths using that same link in L)

is also bounded by the stress constraint. Each s − fi edge carrying a flow means that

fault fi is verifiable by the path represented by node pj that has the flow value on fi−pj

equal to 1.

5.4.1 Problem Complexity

The problem of minimum cost link stress constrained overlay design for fault verifica-

tion is proven to be NP-hard by reduction from the 3-cover problem [62][89], as follows:

The 3-cover problem is a known NP-hard problem.

Instance: Given a collection of m (possibly overlapping) sets S1, S2, . . . , Sm each with

three elements drawn from the set N = {1, 2, 3, . . . , n}.
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Figure 5.3 The reduction of the minimum cost link stress constrained fault
verification problem from the 3-cover problem.

Question: Does there exist n/3 pairwise disjoint sets from this collection such that

their union is equal to N .

Proof: We consider a simple instance of the minimum cost link stress constrained fault

verification problem, where there are no costs and the link stress constraint is 1 for all

links (i.e., disjoint debugging paths). Further assume that each fault is verifiable by

one path only, which allows us to merge the fi nodes with the corresponding pj nodes:

∀fi ∈ F, ∀pj ∈ P , if (fi, pj) ∈ Ef , then merge fi and pj. Also, assume that each path

consists of 3 links. We wish to find if at least ν faults can be verified.

Fig. 5.3 shows the flow network corresponding to the reduction from the 3-cover

problem. In this network, Si = fi ∀fi ∈ F , |F | = m, |L| = n, each link |li| ∈ L will

correspond to a number i ∈ N , and ν = n/3 or the total flow value is n.

5.4.2 Relaxing the Stress constraint

Since the problem is NP-hard, we look for a relaxation of the problem that will

make it computationally tractable. We choose to relax the link stress constraint, and
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reformulate the problem with path costs λi, as a minimum cost circulation problem [89].

Fig. 5.4 shows the corresponding flow network. The main differences in this flow network

are the removal of the path multipliers, and that we add an edge from t to s with capacity

|F |, and a cost of −C, where C is larger than any path cost. It can be shown that finding

the minimum cost circulation will correspond to finding the maximum number of least

cost debugging paths that can verify the most possible number of suspected faulty links.

The maximum flow (i.e. maximum number of faults to be verified) is achieved because

of the very large negative cost on the t − s edge. The more flow that is pushed on the

s − fi edges, the least the cost will be, till we reach the upper bound of |F | (i.e., the

number of suspected faults) if possible, then the circulation stops. Each s − fi edge

carrying a flow means that fault fi is verifiable by the path represented by node pj with

the on fi − pj equal to 1. The minimum cost is guaranteed by the elimination of all

negative cost cycles (i.e., faults verifiable with less cost) in the residual network. Such a

proof is well-known in the optimization literature [89].

Building upon this construction, we map the problem into an LP (Linear Program),

which can be solved using common optimization tools (e.g., CPLEX [74]), as follows:

Let Gf = (Vf , Ef ) be the flow network in Fig. 5.4, let xij be the flow value along

edge (i, j) ∈ Ef , cij is the cost per unit flow along edge (i, j), and uij is its upper bound,

or the edge’s capacity. Then, the corresponding LP formulation is:

Minimize
∑

(i,j)∈Ef

cijxij
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Figure 5.4 Relaxing the link stress constraints allowed us to model the prob-
lem as a minimum cost circulation.

Subject to

∑
j

xij =
∑

j

xji , ∀i, j ∈ Vf (5.1)

xsfj
= {0, 1} ∀(s, fj) ∈ Ef (5.2)

xfipj
= {0, 1} ∀(fi, pj) ∈ Ef (5.3)

xpit = {0, 1} ∀(pi, t) ∈ Ef (5.4)

0 ≤ xts ≤ |F | (5.5)

In the above formulation, constraint 1 is the flow conservation constraint, constraints

2-4 are binary constraints (e.g., either use the link in the flow network or do not), and

constraint 5 states that we can not verify more faults than what is given.

5.5 Performance Evaluation

The problem is studied on real Internet ISP topologies of two major U.S. carriers

provided by RocketFuel [72]: AT&T (AS# 7018, 11800 nodes), and Sprint (AS# 1239,
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10332 nodes). In addition, two smaller networks are considered: Ebone (AS# 1755, 300

nodes), and Above (AS# 6461, 654 nodes). A shortest path algorithm, based on hop

count, is used for the IP-layer routing.

The set of overlay nodes is uniformly selected at random. The number of overlay

nodes (N) is set to 16 and 128. The overlay topology is varied in two ways: a complete

graph (denoted as complete), where each nodes maintains overlay links to every other

node, and a random graph (denoted as log) where each node maintains log2 N neighbors.

Coverage of IP links

The first aspect that should be considered when choosing the set of overlay nodes

is how many IP links to they cover? Fig. 5.5 shows the percentage of the covered IP

links against the number of overlay nodes and for the two overlay topologies previously

mentioned. The results show that there is not much difference, in terms of coverage,

between the log overlay and the complete overlay, as both achieve comparable results.

In general, the percentage is good (i.e., 25-35% for 128 overlay nodes), however, it is

so because of the small size of the underlying IP network. For the larger AT&T and

Sprint networks, the percentage was close to 5% for 128 overlay nodes. The conclusion

to be drawn here is that the choice of the overlay nodes (an ongoing and future research

problem) should be dynamic and changing with the set of suspected faults.

Debugging Faulty Links

How much path disjointedness is it possible to get from an available set of overlay

paths? Remember that in order to verify any two links we need two paths such that

each path contains one of the links, but not the other. We show the results for the

AT&T network, as the other networks follows the same trend. We set the number of

links requiring debugging (from the currently covered set of IP links) to 5, 10, 15, and

20. The cost of the path is set to its IP hop count. Fig. 5.6a shows the normalized
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average number of successfully debugged IP links versus the number of suspected IP

links for a complete overlay of sizes 16, 32, and 64 nodes. While Fig. 5.6b shows the

same results for a random graph (denoted as log) for the same number of nodes. This

figure shows that even though there is significant overlap in the overlay, we are still able

to find a very good number of disjoint paths. For example, for 5 suspected links, close

to 90% of the links were debugged successfully using a complete overlay of size 64 or 32,

the percentage drops to 68% for the humble overlay size of 16. As for the random log

graph, the numbers are slightly less impressing as compared to the complete graph.

5.6 Conclusion

In this chapter, the problem of verifying IP links faults using overlay networks mon-

itoring was introduced. The problem of verifying the maximum number of faults using

the least cost paths under link stress constraints was proven to be NP-hard. In addition,

a relaxation of the link stress constraints was given and the maximum number of faults

that can be verified using the least cost paths was studied.

using experimental results, it was shown that it is possible to achieve good verification

capabilities with a small number of overlay nodes (e.g., 64 nodes) due to the path

diversity provided by the overlay network. However, the number of IP links covered

by the overlay is small. Hence, dynamic selection of the overlay nodes, based on the

network topology and the set of suspected faulty links, is needed.

For future work, heuristic solutions to the fault verification problem, under the stress

constraints, can be developed. More importantly, choosing the set of overlay nodes to

be used for fault verification, in addition to the network topology, is a problem worth

investigating.
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Figure 5.5 The percentage of IP links covered by the overlay network for
various number of overlay nodes, and network topologies.
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Figure 5.6 The average link debugging capability for various sizes and
topologies of the overlay network.
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CHAPTER 6. Conclusions and Future Work

In this dissertation, the usefulness and feasibility of combining information about

measurement tools and overlay monitoring protocols was demonstrated. The overall

goal was to achieve accurate monitoring with low impact on the underlying IP network,

and to use monitoring paths in accurate and timely IP links fault location. This goal

was achieved by taking under consideration the various topological properties of the

overlay and timing conflicts among different measurement tools. Our contributions was

as follows:

1. The amount of overlap among different overlay paths was studied on real-life Inter-

net topologies for various overlay sizes and topologies. For example, for a complete

overlay network of 64 nodes over the AT&T network, 65% of links had participated

in about 25 paths or less. Such numbers were sufficient to significantly degrade

the quality of measurements.

2. A monitoring overlay on top of PlanetLab was constructed to demonstrate the

effect of the measurement conflict problem on the accuracy of bandwidth esti-

mation. Using the Iperf bandwidth measurement tool, the reported bandwidth

values were 70% and 25% of the accurate bandwidth value for 5 and 10 conflicting

measurement tasks respectively.

3. The problem of conducting conflict-free measurements was formulated as a schedul-

ing problem of real-time tasks, and the complexity of the problem was proven to

be NP-hard. The temporal and spatial properties of the overlay network were used
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to develop scheduling heuristics that achieve up to 25% better schedulability over

the existing algorithm.

4. The concept of internal probing was proposed to minimize the monitoring over-

head, while capping the link stress caused by the overlay monitoring algorithms.

Such an approach achieves 30% lower link stress than the topology-oblivious mon-

itoring algorithms.

5. The validity and performance of using common overlay networks topologies in

network fault location was evaluated.

6. Problems related to verifying IP links faults using overlay networks under a set of

cost and link stress constraints were formulated and the complexity of the problem

was proven to be NP-hard.

7. Using real-life Internet topologies to evaluate the performance of the proposed

solutions, it was found that a typical overlay topology can verify up to 95% of IP

links faults.

Broader Impact

Beside the intellectual and academic contributions of this dissertation, the following

impact was expected on the research community and industry:

• Content Distribution service providers like Akamai (45000 globally distributed

servers, contributing 20% of the Internet traffic) can benefit from measurement

scheduling algorithms in orchestrating their continuous service-monitoring activi-

ties to achieve more accurate measurement results, which in turn translates into

better services and more revenue. Other than the affect on measurement accu-

racy, controlling the link stress could be beneficial for this kind of overlays for
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other reasons; In particular, the pricing of the underlying IP links may vary, and

thus, high-priced links should experience less link stress.

• Internet Service Providers (ISPs) can benefit from the verification of IP links faults

using monitoring overlays in a manner that allows for the fast and accurate fault

detection, location, and maintenance. In addition, the same monitoring benefits

enjoyed by the content distribution networks above can apply to ISPs.

Future work

The work presented in this dissertation opens up research in the following directions.

• Employing concepts from the real-time scheduling literature in achieving more

efficient schedulability of measurement tasks. In particular, the imprecise com-

putation model [69] can be used to allow measurement tasks to partially overlap,

thus reducing the schedule time and allowing more tasks to execute, albeit at the

expense of a reduction in the measurement accuracy depending on the amount

of overlap. In addition, real-time multiprocessor scheduling algorithms can be

adapted in a novel manner to fit the measurement scheduling problem.

• It was demonstrated that the accuracy of the measurement tasks degrades as the

overlap in time and space increases. It would be appealing to study in more depth,

how the behavior of dependent application will differ from the no-conflict case.

• Design and analysis of multi-source multi-destination bandwidth measurement

tools. Does this approach achieve better performance than dividing the prob-

lems into monitoring protocols and measurement tools? Such a question is yet to

be answered.
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